第79页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
【例3】(多维原创)如图,在$\triangle ABC$中,点$E$,$D$分别在$AB$,$BC$上,$AD$与$CE$相交于点$F$,$AB=AC$,$AE=BD$,$AD=CE$.
(1)求证:$\triangle ACE\cong \triangle BAD$;
(2)若$\angle DFC=60^{\circ}$,求证:$\triangle ABC$是等边三角形.

(1)求证:$\triangle ACE\cong \triangle BAD$;
(2)若$\angle DFC=60^{\circ}$,求证:$\triangle ABC$是等边三角形.
答案:
【例 3】证明:
(1)在$\triangle ACE$和$\triangle BAD$中,
$\left\{\begin{array}{l}AE = BD,\\AC = AB,\\CE = AD,\end{array}\right.$
$\therefore\triangle ACE\cong\triangle BAD(SSS)$.
(2)由
(1),得$\triangle ACE\cong\triangle BAD$,
$\therefore\angle ECA=\angle DAB$.
$\because\angle DFC=\angle FAC+\angle ECA = 60^{\circ}$,
$\therefore\angle DAB+\angle FAC=\angle BAC = 60^{\circ}$.
又$\because AB = AC$,
$\therefore\triangle ABC$是等边三角形.
(1)在$\triangle ACE$和$\triangle BAD$中,
$\left\{\begin{array}{l}AE = BD,\\AC = AB,\\CE = AD,\end{array}\right.$
$\therefore\triangle ACE\cong\triangle BAD(SSS)$.
(2)由
(1),得$\triangle ACE\cong\triangle BAD$,
$\therefore\angle ECA=\angle DAB$.
$\because\angle DFC=\angle FAC+\angle ECA = 60^{\circ}$,
$\therefore\angle DAB+\angle FAC=\angle BAC = 60^{\circ}$.
又$\because AB = AC$,
$\therefore\triangle ABC$是等边三角形.
【变式3】如图,在等边三角形$ABC$中,点$P$在$\triangle ABC$内,点$Q$在$\triangle ABC$外,且$\angle ABP=\angle ACQ$,$BP=CQ$,问$\triangle APQ$是什么形状的三角形?试证明你的结论.

答案:
【变式 3】解:$\triangle APQ$是等边三角形.
证明如下:$\because\triangle ABC$是等边三角形,
$\therefore AB = AC$.
在$\triangle ABP$和$\triangle ACQ$中,
$\left\{\begin{array}{l}AB = AC,\\\angle ABP=\angle ACQ,\\BP = CQ,\end{array}\right.$
$\therefore\triangle ABP\cong\triangle ACQ(SAS)$.
$\therefore AP = AQ$,$\angle BAP=\angle CAQ$.
$\because\angle BAC=\angle BAP+\angle PAC = 60^{\circ}$,
$\therefore\angle PAQ=\angle CAQ+\angle PAC = 60^{\circ}$.
$\therefore\triangle APQ$是等边三角形.
证明如下:$\because\triangle ABC$是等边三角形,
$\therefore AB = AC$.
在$\triangle ABP$和$\triangle ACQ$中,
$\left\{\begin{array}{l}AB = AC,\\\angle ABP=\angle ACQ,\\BP = CQ,\end{array}\right.$
$\therefore\triangle ABP\cong\triangle ACQ(SAS)$.
$\therefore AP = AQ$,$\angle BAP=\angle CAQ$.
$\because\angle BAC=\angle BAP+\angle PAC = 60^{\circ}$,
$\therefore\angle PAQ=\angle CAQ+\angle PAC = 60^{\circ}$.
$\therefore\triangle APQ$是等边三角形.
1. 如图,在等边三角形$ABC$中,$\angle ABC$与$\angle ACB$的平分线相交于点$O$,且$OD// AB$,$OE// AC$.
(1)试判定$\triangle ODE$的形状,并说明理由;
(2)若$BC=10$,求$\triangle ODE$的周长.

(1)试判定$\triangle ODE$的形状,并说明理由;
(2)若$BC=10$,求$\triangle ODE$的周长.
答案:
1. 解:
(1)$\triangle ODE$是等边三角形.
理由如下:$\because\triangle ABC$是等边三角形,
$\therefore\angle ABC=\angle ACB = 60^{\circ}$.
$\because OD// AB$,$OE// AC$,
$\therefore\angle ODE=\angle ABC = 60^{\circ}$,$\angle OED=\angle ACB = 60^{\circ}$.
$\therefore\angle DOE = 60^{\circ}$.
$\therefore ODE=\angle OED=\angle DOE$.
$\therefore\triangle ODE$是等边三角形.
(2)$\because BO$平分$\angle ABC$,
$\therefore\angle ABO=\angle DBO$.
$\because OD// AB$,
$\therefore\angle ABO=\angle DOB$.
$\therefore\angle DOB=\angle DBO$.
$\therefore BD = OD$.
同理,可证$CE = OE$.
$\therefore\triangle ODE$的周长为$OD + DE + OE = BD + DE + CE = BC = 10$.
(1)$\triangle ODE$是等边三角形.
理由如下:$\because\triangle ABC$是等边三角形,
$\therefore\angle ABC=\angle ACB = 60^{\circ}$.
$\because OD// AB$,$OE// AC$,
$\therefore\angle ODE=\angle ABC = 60^{\circ}$,$\angle OED=\angle ACB = 60^{\circ}$.
$\therefore\angle DOE = 60^{\circ}$.
$\therefore ODE=\angle OED=\angle DOE$.
$\therefore\triangle ODE$是等边三角形.
(2)$\because BO$平分$\angle ABC$,
$\therefore\angle ABO=\angle DBO$.
$\because OD// AB$,
$\therefore\angle ABO=\angle DOB$.
$\therefore\angle DOB=\angle DBO$.
$\therefore BD = OD$.
同理,可证$CE = OE$.
$\therefore\triangle ODE$的周长为$OD + DE + OE = BD + DE + CE = BC = 10$.
2. (中考新考法·探究与应用)如图,$\triangle ABC$是等边三角形,且$AB=2$,点$D$在线段$BC$上,以$AD$为一边在$AD$的右侧作$\triangle ADE$,使$AD=AE$,$\angle DAE=\angle BAC$,连接$CE$.
(1)求证:$\angle BCE+\angle BAC=180^{\circ}$;
(2)当四边形$ADCE$的周长取最小值时,求$BD$的长.

(1)求证:$\angle BCE+\angle BAC=180^{\circ}$;
(2)当四边形$ADCE$的周长取最小值时,求$BD$的长.
答案:
2. 解:
(1)证明:$\because\triangle ABC$是等边三角形,
$\therefore AB = AC$,$\angle B=\angle ACB = 60^{\circ}$.
$\because\angle BAC=\angle DAE$,
$\therefore\angle BAD=\angle CAE$.
在$\triangle ABD$和$\triangle ACE$中,
$\left\{\begin{array}{l}AB = AC,\\\angle BAD=\angle CAE,\\AD = AE,\end{array}\right.$
$\therefore\triangle ABD\cong\triangle ACE(SAS)$.
$\therefore\angle ACE=\angle ABD = 60^{\circ}$.
$\therefore\angle BCE=\angle BCA+\angle ACE = 120^{\circ}$.
$\therefore\angle BCE+\angle BAC = 180^{\circ}$.
(2)由
(1),得$\triangle ABD\cong\triangle ACE$,
$\therefore BD = CE$.
$\therefore$四边形$ADCE$的周长为$AD + DC + CE + AE = AD + DC + BD + AE = BC + 2AD$.
$\therefore$当$AD$最短时,四边形$ADCE$的周长最小,即$AD\perp BC$时,四边形$ADCE$的周长最小.
$\because AB = AC = 2$,$AD\perp BC$,
$\therefore BD=\frac{1}{2}CB = 1$.
(1)证明:$\because\triangle ABC$是等边三角形,
$\therefore AB = AC$,$\angle B=\angle ACB = 60^{\circ}$.
$\because\angle BAC=\angle DAE$,
$\therefore\angle BAD=\angle CAE$.
在$\triangle ABD$和$\triangle ACE$中,
$\left\{\begin{array}{l}AB = AC,\\\angle BAD=\angle CAE,\\AD = AE,\end{array}\right.$
$\therefore\triangle ABD\cong\triangle ACE(SAS)$.
$\therefore\angle ACE=\angle ABD = 60^{\circ}$.
$\therefore\angle BCE=\angle BCA+\angle ACE = 120^{\circ}$.
$\therefore\angle BCE+\angle BAC = 180^{\circ}$.
(2)由
(1),得$\triangle ABD\cong\triangle ACE$,
$\therefore BD = CE$.
$\therefore$四边形$ADCE$的周长为$AD + DC + CE + AE = AD + DC + BD + AE = BC + 2AD$.
$\therefore$当$AD$最短时,四边形$ADCE$的周长最小,即$AD\perp BC$时,四边形$ADCE$的周长最小.
$\because AB = AC = 2$,$AD\perp BC$,
$\therefore BD=\frac{1}{2}CB = 1$.
查看更多完整答案,请扫码查看