2025年多维导学案八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年多维导学案八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年多维导学案八年级数学上册人教版》

三角形的内角和定理:
三角形的内角和等于
$180^{\circ}$
.
几何语言:
如图,已知$\triangle ABC$,
则有$\angle A+\angle B+\angle C=$
$180$
$^{\circ}$.
答案: $180^{\circ}$ $180$ 
如图,已知$\triangle ABC$,求证:$\angle BAC+\angle B+\angle C=180^{\circ}$.

证明:如图,过点$A$作直线$DE// BC$.
$\therefore \angle B=\angle 2$,$\angle C=$____.
$\because \angle 1+\angle 2+\angle 3=$____$^{\circ}$,
$\therefore \angle BAC+\angle B+\angle C=$____$^{\circ}$.
答案: $\angle 1$ $180$ $180$
【例1】在$\triangle ABC$中:
(1)若$\angle A=70^{\circ}$,$\angle B=30^{\circ}$,则$\angle C=$
80
$^{\circ}$;
(2)若$\angle A=65^{\circ}$,则$\angle B+\angle C=$
115
$^{\circ}$;
(3)若$\angle A:\angle B:\angle C=1:2:3$,则$\angle A=$
30
$^{\circ}$;
(4)若$\angle A=45^{\circ}$,$\angle B$比$\angle C$大$25^{\circ}$,求$\angle B$的度数.
解:$\because \angle B$比$\angle C$大$25^{\circ},$
$\therefore$设$\angle B=x$,则$\angle C=x-25^{\circ}.$
$\because \angle A+\angle B+\angle C=180^{\circ},$
$\therefore 45^{\circ}+x+x-25^{\circ}=180^{\circ}.$
解得$x=80^{\circ}.$
$\therefore \angle B$的度数为$80^{\circ}.$
答案:
(1)$80$
(2)$115$
(3)$30$
(4)解:$\because \angle B$比$\angle C$大$25^{\circ},$
$\therefore$设$\angle B=x$,则$\angle C=x-25^{\circ}.$
$\because \angle A+\angle B+\angle C=180^{\circ},$
$\therefore 45^{\circ}+x+x-25^{\circ}=180^{\circ}.$
解得$x=80^{\circ}.$
$\therefore \angle B$的度数为$80^{\circ}.$
【变式1】(1)求出下列各图形中$x$的值:

$x=$
40
$x=$
60

(2)若$\angle A=20^{\circ}$,$\angle B=3\angle C$,求$\angle C$的度数.
解:$\because \angle B=3\angle C,$
$\therefore$设$\angle C=x$,则$\angle B=3x.$
$\because \angle A+\angle B+\angle C=180^{\circ},$
$\therefore 20^{\circ}+x+3x=180^{\circ}.$
解得$x=40^{\circ}.$
$\therefore \angle C$的度数为$40^{\circ}.$
答案:
(1)$40$ $60$
(2)解:$\because \angle B=3\angle C,$
$\therefore$设$\angle C=x$,则$\angle B=3x.$
$\because \angle A+\angle B+\angle C=180^{\circ},$
$\therefore 20^{\circ}+x+3x=180^{\circ}.$
解得$x=40^{\circ}.$
$\therefore \angle C$的度数为$40^{\circ}.$
【例2】(人教教材P12例1改编)如图,在$\triangle ABC$中,$\angle BAC=40^{\circ}$,$\angle B=65^{\circ}$,$AD$是$\triangle ABC$的角平分线,求$\angle ADB$的度数.

答案: 解:$\because AD$平分$\angle BAC$,且$\angle BAC=40^{\circ},$
$\therefore \angle BAD=\frac{1}{2}\angle BAC=20^{\circ}.$
$\because \angle BAD+\angle B+\angle ADB=180^{\circ},$
$\angle B=65^{\circ},$
$\therefore \angle ADB=180^{\circ}-65^{\circ}-20^{\circ}=95^{\circ}.$
【变式2】(多维原创)如图,$AE$是$\triangle ABC$的角平分线,$AD$是高,$\angle B=30^{\circ}$,$\angle C=65^{\circ}$.
(1)求$\angle CAE$度数;
(2)求$\angle DAE$的度数.

答案: 解:
(1)$\because$在$\triangle ABC$中,
$\angle B=30^{\circ},\angle C=65^{\circ},$
$\therefore \angle BAC=180^{\circ}-\angle B-\angle C=180^{\circ}-$
$30^{\circ}-65^{\circ}=85^{\circ}.$
$\because AE$平分$\angle BAC,$
$\therefore \angle CAE=\frac{1}{2}\angle BAC=\frac{1}{2}\times85^{\circ}=42.5^{\circ}.$
(2)$\because AD$是高,$\therefore \angle ADC=90^{\circ}.$
$\therefore \angle CAD=180^{\circ}-90^{\circ}-65^{\circ}=25^{\circ}.$
$\therefore \angle DAE=\angle CAE-\angle CAD=42.5^{\circ}-$
$25^{\circ}=17.5^{\circ}.$

查看更多完整答案,请扫码查看

关闭