2025年多维导学案八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年多维导学案八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年多维导学案八年级数学上册人教版》

【例3】如图,$\triangle ABC \cong \triangle ADE$. 求证:$\angle CAE = \angle BAD$.
答案: 证明: $∵△ABC≌△ADE$,$∴∠1 = ∠2$.$∴∠1 + ∠BAE = ∠2 + ∠BAE$,即$∠CAE = ∠BAD$.
【变式3】(人教教材P31T5改编)如图,$\triangle ABC \cong \triangle ADE$. 求证:
(1)$\angle 1 = \angle 2$;
(2)$\angle 1 = \angle 3$.
答案: 证明:
(1) $∵△ABC≌△ADE$,$∴∠BAC = ∠DAE$.$∴∠BAC - ∠CAD = ∠DAE - ∠CAD$.$∴∠1 = ∠2$.
(2)设AD与BC交于点F.$∵△ABC≌△ADE$,$∴∠B = ∠D$.
$∵∠1 + ∠B + ∠AFB = 180°$,$∠3 + ∠D + ∠CFD = 180°$,$∠AFB = ∠CFD$,$∴∠1 = ∠3$.
1. 如图,$\triangle ABC \cong \triangle DEC$,$B$,$C$,$D$三点在同一直线上,若$CE = 6$,$AC = 9$,则$BD$的长为
15
.
答案: 15
2. (人教教材P31T3改编)已知图中的两个三角形全等,则$\angle \alpha =$
$72°$
.
答案: $72°$
3. (人教教材P31T2改编)如图,$\triangle ABN \cong \triangle ACM$,$\angle B$和$\angle C$是对应角,$AB$和$AC$是对应边,则其他对应边为:
BN和CM,AN和AM
,其他对应角为:
∠ANB和∠AMC,∠BAN和∠CAM
.
答案: BN和CM,AN和AM
$∠ANB$和$∠AMC$,$∠BAN$和$∠CAM$
4. (人教教材P30例题改编)如图,$\triangle ABC \cong \triangle BAD$,点$A$和点$B$,点$C$和点$D$是对应顶点,$\angle BAC = 65^{\circ}$,$\angle ABC = 30^{\circ}$,$AC$,$BD$的延长线相交于点$E$,求$\angle CBD$,$\angle AEB$的度数.
答案: 解: $∵△ABC≌△BAD$,$∴∠ABD = ∠BAC = 65°$,$∠BAD = ∠ABC = 30°$.
$∴∠CBD = ∠ABD - ∠ABC = 65° - 30° = 35°$.
又$∵△ABE$的内角和为180°,$∴∠AEB = 180° - ∠BAC - ∠ABD = 180° - 65° - 65° = 50°$.
5. (中考热点·证明两线垂直)如图,$\triangle ABD \cong \triangle EBC$,$AB = 4\ \text{cm}$,$BC = 7\ \text{cm}$.
(1)求$DE$的长;
(2)判断直线$AD$与直线$CE$的位置关系,并说明理由.
答案:
解:
(1) $∵△ABD≌△EBC$,$AB = 4cm$,$BC = 7cm$,$∴BD = BC = 7cm$,$AB = EB = 4cm$.$∴DE = BD - BE = 3cm$.
(2) $AD⊥CE$.理由如下:
如图,延长CE交AD于点F.

$∵△ABD≌△EBC$,$∴∠D = ∠C$,$∠ABD = ∠EBC$.
$∴∠ABD + ∠EBC = 180°$.
$∴∠ABD = 90°$.
$∴∠A + ∠D = 90°$.
$∴∠A + ∠C = 90°$.
$∴∠AFC = 90°$.
$∴CE⊥AD$.

查看更多完整答案,请扫码查看

关闭