2025年多维导学案八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年多维导学案八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年多维导学案八年级数学上册人教版》

1. 在下列各图的△ABC中,正确画出边AC上的高是(
C
)
答案: C
2. 下列说法正确的是(
B
)
A. 直角三角形的高只有一条
B. 锐角三角形的三条高交于三角形内部
C. 直角三角形的高没有交点
D. 钝角三角形的三条高所在的直线没有交点
答案: B
3. 下列各图中,阴影面积相等的是(
B
)
A. ①与②
B. ①与③
C. ②与③
D. ②与④
答案: B
4.(人教教材P10T7)如图,在△ABC中,若AB=2,BC=4,则△ABC的高AD与CE的比是多少?
答案: 解:根据题意,得 $S_{\triangle ABC} = \frac{1}{2}AB \cdot CE = \frac{1}{2}BC \cdot AD $,
 即 $ \frac{1}{2} \times 2 \times CE = \frac{1}{2} \times 4 \times AD $。
 $\therefore AD:CE = 1:2$。
5.(中考新考法·类比思想)如图,在△ABC中,AB=AC,点P是射线BC上的一个动点,过点P作PD⊥AB,PE⊥AC,垂足分别为点D,E,BF为△ABC的腰AC上的高。
(1)如图1,当点P在线段BC上时,试探究BF,PD,PE之间的关系,并说明理由;
(2)如图2,当点P运动到BC的延长线上时,直接写出BF,PD,PE之间的关系。

答案: 解:
(1)$BF = PD + PE$。理由如下:
 $\because S_{\triangle ABC} = S_{\triangle ABP} + S_{\triangle ACP} $,
 $\therefore \frac{1}{2}AC \cdot BF = \frac{1}{2}AB \cdot PD + \frac{1}{2}AC \cdot PE $。
 $\because AB = AC $,
 $\therefore \frac{1}{2}AC \cdot BF = \frac{1}{2}AC \cdot (PD + PE) $。
 $\therefore BF = PD + PE $。
(2)$BF = PD - PE$。

查看更多完整答案,请扫码查看

关闭