2025年多维导学案八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年多维导学案八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年多维导学案八年级数学上册人教版》

【例3】如图,在$\triangle ABC$中,$AB = AC$,$AD \perp BC$于点$D$,点$E$在线段$AD$上. 求证:$BE = CE$.

答案: 证明:$\because AB = AC$,$AD\perp BC$,
$\therefore \angle BAE=\angle CAE$.
在$\triangle ABE$和$\triangle ACE$中,
$\left\{\begin{array}{l}AB = AC,\\\angle BAE=\angle CAE,\\AE = AE,\end{array}\right.$
$\therefore \triangle ABE\cong\triangle ACE(SAS)$.
$\therefore BE = CE$.
【变式3】如图,在$\triangle ABC$中,$AB = AC$,$AD$是边$BC$上的中线,点$E$是边$AC$上的一点,且$\angle 1 = \angle 2$. 求证:$BE \perp AC$.
答案: 证明:$\because AB = AC$,$AD$是边BC上的中线,
$\therefore AD\perp BC$.
$\therefore \angle 1+\angle C = 90^{\circ}$.
又$\because \angle 2=\angle 1$,
$\therefore \angle 2+\angle C = 90^{\circ}$.
$\therefore \angle BEC = 90^{\circ}$,即$BE\perp AC$.
1. 如图,在平面直角坐标系中,$\triangle OAB$的顶点$A$的坐标为$(3,-2)$,点$B$在$y$轴负半轴上,若$OA = AB$,则点$B$的坐标为
$(0,-4)$
.
答案: $(0,-4)$
2. 如图,在$\triangle ABC$中,$AB = AC$,$AD$是$\triangle ABC$的角平分线,下列结论中不正确的是____. (填序号)
①$AD \perp BC$;②$\angle B = \angle C$;③$DB = DC$;④$AB = 2BD$;⑤$\triangle ADB \cong \triangle ADC$.
第2题图
答案:
3. (中考热点·等腰三角形与全等综合)如图,在$\triangle ABC$中,$AB = AC$,$AD \perp BC$于点$D$,$CE \perp AB$于点$E$,$AE = CE$. 求证:
(1)$\triangle AEF \cong \triangle CEB$;
(2)$AF = 2CD$.
答案: 证明:
(1)$\because AD\perp BC$,
$\therefore \angle B+\angle BAD = 90^{\circ}$.
$\because CE\perp AB$,
$\therefore \angle B+\angle BCE = 90^{\circ}$.
$\therefore \angle BAD=\angle BCE$,即$\angle EAF=\angle ECB$.
在$\triangle AEF$和$\triangle CEB$中,
$\left\{\begin{array}{l}\angle AEF=\angle CEB,\\AE = CE,\\\angle EAF=\angle ECB,\end{array}\right.$
$\therefore \triangle AEF\cong\triangle CEB(ASA)$.
(2)由
(1),得$\triangle AEF\cong\triangle CEB$,
$\therefore AF = BC$.
$\because AB = AC$,$AD\perp BC$,
$\therefore CD = BD$,$BC = 2CD$.
$\therefore AF = 2CD$.
4. 如图,在$\triangle ABC$中,$\angle BAC = 90^{\circ}$,点$E$为边$BC$上的点,且$AE = AC$,点$D$为线段$EC$的中点,连接$AD$,过点$E$作$EF \perp AE$,交$BC$的平行线$AF$于点$F$.
求证:(1)$\angle B = \angle CAD$;
(2)$AB = EF$.
答案: 证明:
(1)$\because AE = AC$,点D为线段EC的中点,
$\therefore AD\perp BC$.
$\therefore \angle B+\angle BAD = 90^{\circ}$.
$\because \angle BAC = 90^{\circ}$,
$\therefore \angle BAD+\angle CAD = 90^{\circ}$.
$\therefore \angle B=\angle CAD$.
(2)$\because AF// BC$,
$\therefore \angle AEC=\angle EAF$.
$\because AE = AC$,
$\therefore \angle AEC=\angle ACB$.
$\therefore \angle ACB=\angle EAF$.
$\because EF\perp AE$,
$\therefore \angle BAC=\angle FEA = 90^{\circ}$.
在$\triangle ABC$和$\triangle EFA$中,
$\left\{\begin{array}{l}\angle BAC=\angle FEA,\\AC = EA,\\\angle ACB=\angle EAF,\end{array}\right.$
$\therefore \triangle ABC\cong\triangle EFA(ASA)$.
$\therefore AB = EF$.

查看更多完整答案,请扫码查看

关闭