2025年多维导学案八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年多维导学案八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年多维导学案八年级数学上册人教版》

一、预习导学
| | 图例 | 性质 |
| --- | --- | --- |
| 等腰三角形 | | 等腰三角形底边上的
中线
顶角平分线
重合(简写成“三线合一”). |
| 几何语言 | | $\because AB = AC$,$\angle 1 = \angle 2$,$\therefore$
$AD\perp BC$
$BD = CD$
. | $\because AB = AC$,$BD = CD$,$\therefore$
$\angle 1=\angle 2$
$AD\perp BC$
. | $\because AB = AC$,$AD \perp BC$,$\therefore$
$\angle 1=\angle 2$
$BD = CD$
. |
答案: 中线 高 顶角平分线
$AD\perp BC$ $BD = CD$
$\angle 1=\angle 2$ $AD\perp BC$
$\angle 1=\angle 2$ $BD = CD$
【例1】如图,在$\triangle ABC$中,$AB = AC$,点$D$是$BC$的中点.
(1)求证:$\angle ADC = 90^{\circ}$;
(2)若$\angle BAC = 100^{\circ}$,求$\angle BAD$的度数.

答案: 证明:$\because AB = AC$,点D是BC的中点,
$\therefore AD\perp BC$,即$\angle ADC = 90^{\circ}$.
(2)$\because AB = AC$,点D是BC的中点,
$\therefore AD$为$\angle BAC$的平分线,
即$\angle BAD=\frac{1}{2}\angle BAC = 50^{\circ}$.
【变式1】如图,在$\triangle ABC$中,$AC = BC$,$CD \perp AB$于点$D$.
(1)若$AD = 2cm$,求$BD$的长;
(2)若$\angle 1 = 25^{\circ}$,求$\angle ACB$的度数.

答案: 解:
(1)$\because AC = BC$,$CD\perp AB$,
$\therefore AD = BD = 2cm$.
(2)$\because AC = BC$,$CD\perp AB$,
$\therefore CD$为$\angle ACB$的平分线,
即$\angle ACB = 2\angle 1 = 50^{\circ}$.
【例2】如图,在$\triangle ABC$中,$AB = AC$,点$D$是$BC$的中点,点$E$在$AC$上,$AD = AE$,若$\angle BAD = 50^{\circ}$,求$\angle CED$的度数.
答案: 解:$\because AB = AC$,点D是BC的中点,
$\therefore \angle CAD=\angle BAD = 50^{\circ}$.
又$\because AD = AE$,
$\therefore \angle ADE=\angle AED=\frac{1}{2}\times(180^{\circ}-50^{\circ}) = 65^{\circ}$,
$\therefore \angle CED = 180^{\circ}-65^{\circ}=115^{\circ}$.
【变式2】如图,$AD$是$\triangle ABC$的中线,$AB = AC$,$\angle C = 40^{\circ}$,$DE \perp AB$于点$E$,求$\angle CAD$与$\angle ADE$的度数.

答案: 解:$\because AB = AC$,$BD = CD$,
$\therefore AD\perp BC$,$AD$平分$\angle BAC$.
$\therefore \angle CAD = 90^{\circ}-\angle C = 50^{\circ}$.
$\therefore \angle BAD=\angle CAD = 50^{\circ}$.
$\because DE\perp AB$,
$\therefore \angle ADE = 90^{\circ}-\angle BAD = 40^{\circ}$.

查看更多完整答案,请扫码查看

关闭