2024年步步高大一轮复习讲义高中数学人教A版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2024年步步高大一轮复习讲义高中数学人教A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2024年步步高大一轮复习讲义高中数学人教A版》

第106页
跟踪训练2 (1) 如图,在山脚A处测得山顶P的仰角为37°,沿坡角为23°的斜坡向上走28 m到达B处,在B处测得山顶P的仰角为53°,且A,B,P,C,Q在同一平面,则山的高度约为(参考数据:sin 37°≈0.6) ( )

A. 30 m B. 32 m C. 34 m D. 36 m
(2) “伦敦眼”坐落在英国伦敦泰晤士河畔,是世界上首座观景摩天轮,又称“千禧之轮”,该摩天轮的半径为6(单位:10 m),游客在乘坐舱P升到上半空鸟瞰伦敦建筑BC,伦敦眼与建筑之间的距离AB为12(单位:10 m),游客在乘坐舱P看建筑BC的视角为θ. 当乘坐舱P在伦敦眼的最高点D时,视角θ = 30°,则建筑BC的高度为______________.(单位:10 m)

答案:
(1)A  
(2)12$\sqrt{3}$-12
例3 已知在岛A南偏西38°方向,距岛A 3海里的B处有一艘救援艇. 岛A处的一艘故障船正以10海里/小时的速度向岛A北偏西22°方向行驶,问救援艇朝何方向以多大速度行驶,恰好用0.5小时追赶上该故障船?
(参考数据:sin 38°取$\frac{5\sqrt{3}}{14}$,sin 22°取$\frac{3\sqrt{3}}{14}$)
答案:
解  如图,设救  援艇在C处追赶上  故障船,D为岛A正            南方向上一点,救援  艇的速度为x海里/  小时,  结合题意知BC=  0.5x,AC=5,∠BAC=180°-38°-22°=120°,  由余弦定理可得BC²=AB+AC²-2AB.ACcos120°=9+25-2×3×5 x(-$\frac{1}{2}$)=49,  所以BC=0.5x=7,解得x=14.  又由正弦定理得sin∠ABC=           $\frac{\sqrt{3}}{2}$  $\frac{AC.sinBAC}{BC}$=$\frac{2}{7}$=$\frac{5\sqrt{3}}{14}$,  所以∠ABC=38°,  又∠BAD=38°,所以BC//AD,  故救援艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时追赶上该故障船
跟踪训练3 (1) (2023·南京模拟) 如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100 m到达B处,又测得C对于山坡的斜度为45°,若CD = 50 m,山坡对于地平面的坡度为θ,则cos θ等于( )

A. $\frac{\sqrt{3}}{3}$ B. $\sqrt{6}$ - 2
C. $\sqrt{3}$ - 1 D. $\sqrt{2}$ - 1
(2) 甲船在A处观察乙船,乙船在它北偏东60°方向,相距a海里的B处,乙船向正北方向行驶,若甲船速度是乙船速度的$\sqrt{3}$倍,甲船为了尽快追上乙船,朝北偏东θ方向前进,则θ = ______.
答案:

(1)C  [在△ABC中,∠ACB=180°-∠BAC-∠ABC=  180°-15°-135°=30°,  由正弦定理知$\frac{BC}{sinBAC}$=$\frac{AB}{sinACB}$,            100×$\frac{\sqrt{6}√2}{4}$  故BC=$\frac{AB.sinBAC}{sinACB}$=              $\frac{1}{2}$  =50 $\sqrt{6}$-$\sqrt{2}$),  在△BDC中,$\frac{BC}{sinBDC}$=$\frac{CD}{sinDBC}$,故5s0i(n√∠6B-D√C2)=$\frac{50}{2}$,         2

∴sin∠BDC=$\sqrt{3}$-1,   即sin(θ+90°)=$\sqrt{3}$-1,   即cosθ=$\sqrt{3}$-1.]   
(2)30°   解析 如图,设两船在    C处相遇,   则由题意得∠ABC=   180°--60°=120°,              且$\frac{AC}{BC}$=√3,   由正弦定理得$\frac{AC}{BC}$=   $\frac{sin120}{sinBAC}$=$\sqrt{3}$,   所以sin∠BAC=$\frac{1}{2}$   又因为O°<∠BAC<60°,   所所以以∠日=BA60C°-=3300。°=30°.

查看更多完整答案,请扫码查看

关闭