2025年学霸题中题八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学霸题中题八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年学霸题中题八年级数学上册人教版》

1. (2024·重庆期中)(1)如图①,$\triangle ABC$是等边三角形,$D$是边$BC$下方一点,$\angle BDC = 120^{\circ}$,探索线段$DA$,$DB$,$DC$之间的数量关系。
(2)如图②,$\triangle ABC$是等边三角形,直线$a// AB$,$D$为边$BC$上一点,$\angle ADE$交直线$a$于点$E$,且$\angle ADE = 60^{\circ}$,求证:$CD + CE = CA$。

答案:

(1) $DA = DC + DB$,理由如下:
如图①,延长 $DC$ 到点 $E$,使 $CE = BD$,连接 $AE$。$\because \triangle ABC$ 是等边三角形,$\therefore AB = AC$,$\angle BAC = 60^{\circ}$。$\because \angle BDC = 120^{\circ}$,$\therefore \angle ABD + \angle ACD = 180^{\circ}$。又$\because \angle ACE + \angle ACD = 180^{\circ}$,$\therefore \angle ABD = \angle ACE$。
在$\triangle ABD$和$\triangle ACE$中,$\begin{cases}AB = AC\\\angle ABD = \angle ACE\\BD = CE\end{cases}$,$\therefore \triangle ABD \cong \triangle ACE (SAS)$,$\therefore AD = AE$,$\angle BAD = \angle CAE$。$\because \angle BAC = 60^{\circ}$,即$\angle BAD + \angle DAC = 60^{\circ}$,$\therefore \angle DAC + \angle CAE = 60^{\circ}$,即$\angle DAE = 60^{\circ}$,$\therefore \triangle ADE$是等边三角形,$\therefore DA = DE = DC + CE = DC + DB$,即$DA = DC + DB$。

  DC
(2) 如图②,在 $AC$ 上截取 $CM = CD$,连接 $DM$。$\because \triangle ABC$ 是等边三角形,$\therefore \angle ACB = 60^{\circ}$,$\therefore \triangle CDM$ 是等边三角形,$\therefore MD = CD = CM$,$\angle CMD = \angle CDM = 60^{\circ}$,$\therefore \angle AMD = 120^{\circ}$。
$\because \angle ADE = 60^{\circ}$,$\therefore \angle ADE = \angle MDC$,$\therefore \angle ADM = \angle EDC$。
$\because$ 直线 $a // AB$,$\therefore \angle ACE = \angle BAC = 60^{\circ}$,$\therefore \angle DCE = 120^{\circ} = \angle AMD$。
在$\triangle ADM$和$\triangle EDC$中,$\begin{cases}\angle ADM = \angle EDC\\MD = CD\\\angle AMD = \angle ECD\end{cases}$,$\therefore \triangle ADM \cong \triangle EDC (ASA)$,$\therefore AM = EC$,$\therefore CA = CM + AM = CD + CE$,即 $CD + CE = CA$。
2. (2025·东营期末)【问题初探】
如图①,已知$\triangle ABC$为等边三角形,点$D$为边$BC$上一动点(点$D$不与点$B$,点$C$重合)。以$AD$为边向右侧作等边三角形$ADE$,连接$CE$。
(1)求证:$\triangle ABD\cong\triangle ACE$;
(2)猜想并证明:①$AB$与$CE$的位置关系
$AB// CE$
;②线段$CE$,$AC$,$CD$之间的数量关系
$CE=AC-CD$

【类比探究】
(3)如图②,若点$D$在边$BC$的延长线上,其他条件不变,随着动点$D$的位置不同,猜想(2)的两个结论是否还成立?若成立,说明理由;若不成立,请写出正确的结论,并说明理由。
①平行成立,②数量关系不成立,应为
$CE=AC+CD$
答案:
(1) $\because \triangle ABC$ 和 $\triangle ADE$ 是等边三角形,$\therefore AB = AC$,$AD = AE$,$\angle BAC = \angle DAE = 60^{\circ}$,$\therefore \angle BAC - \angle DAC = \angle DAE - \angle DAC$,即$\angle BAD = \angle CAE$。
在$\triangle ABD$和$\triangle ACE$中,$\begin{cases}AB = AC\\\angle BAD = \angle CAE\\AD = AE\end{cases}$,$\therefore \triangle ABD \cong \triangle ACE (SAS)$。
(2) ① $AB // CE$;② $CE = AC - CD$。
证明如下:由
(1) 得$\triangle ABD \cong \triangle ACE (SAS)$,$\therefore \angle B = \angle ACE = 60^{\circ}$,$CE = BD$,$\therefore \angle BAC = \angle ACE = 60^{\circ}$,$\therefore AB // CE$。$\because CE = BD$,$AC = BC$,$\therefore CE = BD = BC - CD = AC - CD$。
(3) ① 平行成立,② 数量关系不成立,应为 $CE = AC + CD$。
理由:$\because \triangle ABC$ 和 $\triangle ADE$ 是等边三角形,$\therefore AB = AC$,$AD = AE$,$\angle BAC = \angle DAE = 60^{\circ}$。$\because \angle BAC = \angle DAE$,$\therefore \angle BAC + \angle DAC = \angle DAE + \angle DAC$,即$\angle BAD = \angle CAE$。在$\triangle ABD$和$\triangle ACE$中,$\begin{cases}AB = AC\\\angle BAD = \angle CAE\\AD = AE\end{cases}$,$\therefore \triangle ABD \cong \triangle ACE (SAS)$,$\therefore \angle B = \angle ACE = 60^{\circ}$,$CE = BD$,$\therefore \angle BAC = \angle ACE = 60^{\circ}$,$\therefore AB // CE$。$\because CE = BD$,$AC = BC$,$\therefore CE = BD = BC + CD = AC + CD$。
3. (2024·赣州期末)等边三角形的三条边都相等,三个内角都相等,并且都等于$60^{\circ}$,由此可得等边三角形的每一个外角都等于$120^{\circ}$,等边三角形与$120^{\circ}$的角是否还有某些特殊关系,请你完成证明过程或解答过程。
(1)如图①,$\triangle ABC$是等边三角形,点$D$,$E$分别在$CB$和$BC$的延长线上,且$\angle DAE = 120^{\circ}$,当$\angle D$的度数确定时,$\angle E$的度数也随之确定。
①若$\angle D = 26^{\circ}$,则$\angle E$的度数为______
$34^{\circ}$

②求证:$\angle D = \angle EAC$。
$\because \triangle ABC$ 是等边三角形,$\therefore \angle ACB = \angle E + \angle EAC = 60^{\circ}$。$\because \angle DAE = 120^{\circ}$,$\therefore \angle D + \angle E = 60^{\circ}$,$\therefore \angle D = \angle EAC$。

(2)如图②,$\triangle ABC$是等边三角形,点$P$是三角形内一点,且$\angle APB = 120^{\circ}$,延长$AP$交$BC$于点$D$,延长$BP$交$AC$于点$E$,求证:$AD = BE$。
$\because \triangle ABC$ 是等边三角形,$\therefore AB = BC$,$\angle ABD = \angle BCE = 60^{\circ}$,$\therefore \angle EBC + \angle BEC = 120^{\circ}$。$\because \angle APB = 120^{\circ}$,$\therefore \angle EBC + \angle ADB = 120^{\circ}$,$\therefore \angle BEC = \angle ADB$。在$\triangle ABD$和$\triangle BCE$中,$\begin{cases}\angle ADB = \angle BEC\\\angle ABD = \angle BCE\\AB = BC\end{cases}$,$\therefore \triangle ABD \cong \triangle BCE (AAS)$,$\therefore AD = BE$。

答案:
(1) ① $34^{\circ}$
② $\because \triangle ABC$ 是等边三角形,$\therefore \angle ACB = \angle E + \angle EAC = 60^{\circ}$。$\because \angle DAE = 120^{\circ}$,$\therefore \angle D + \angle E = 60^{\circ}$,$\therefore \angle D = \angle EAC$。
(2) $\because \triangle ABC$ 是等边三角形,$\therefore AB = BC$,$\angle ABD = \angle BCE = 60^{\circ}$,$\therefore \angle EBC + \angle BEC = 120^{\circ}$。$\because \angle APB = 120^{\circ}$,$\therefore \angle EBC + \angle ADB = 120^{\circ}$,$\therefore \angle BEC = \angle ADB$。在$\triangle ABD$和$\triangle BCE$中,$\begin{cases}\angle ADB = \angle BEC\\\angle ABD = \angle BCE\\AB = BC\end{cases}$,$\therefore \triangle ABD \cong \triangle BCE (AAS)$,$\therefore AD = BE$。

查看更多完整答案,请扫码查看

关闭