第6页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
1. 如图所示,D为△ABC中AC边上一点,AD=1,DC=2,AB=4,E是AB上一点,且△ABC的面积等于△DEC面积的2倍,则BE的长为(

$A. \frac { 1 } { 2 } $
B. 1
$C. \frac { 2 } { 3 } $
$D. \frac { 4 } { 3 } $
B
)$A. \frac { 1 } { 2 } $
B. 1
$C. \frac { 2 } { 3 } $
$D. \frac { 4 } { 3 } $
答案:
B 解析:设 $ S_{\triangle ADE} = S $。$\because AD = 1$,$DC = 2$,$\therefore DC = 2AD$。$\because \triangle CDE$ 和 $\triangle ADE$ 同高,设高为 $ h_1 $,$\therefore S_{\triangle CDE} = \frac{1}{2}CD \cdot h_1 = \frac{1}{2} \times 2AD \cdot h_1 = 2 \times \frac{1}{2}AD \cdot h_1 = 2S_{\triangle ADE} = 2S $。$\because \triangle ABC$ 的面积等于 $\triangle DEC$ 面积的 2 倍,$\therefore S_{\triangle ABC} = 4S$。$\because S_{\triangle CBE} + S_{\triangle ADE} + S_{\triangle CDE} = S_{\triangle ABC}$,$\therefore S_{\triangle CBE} + S + 2S = 4S$,$\therefore S_{\triangle CBE} = S = \frac{1}{4} \times 4S = \frac{1}{4}S_{\triangle ABC}$。$\because AB = 4$,$\triangle ABC$ 和 $\triangle BCE$ 同高,设高为 $ h_2 $,$\therefore \frac{1}{2}BE \cdot h_2 = \frac{1}{4} \times \frac{1}{2}AB \cdot h_2$,$\therefore BE = \frac{1}{4}AB = \frac{1}{4} \times 4 = 1$。故选 B。
2. (1)如图①,AD,BE是△ABC的两条中线,AD与BE交于点O,若△ABO的面积为3,则△ABC的面积为______
(2)如图②,D,E分别在△ABC的边BC,AC上,$$ C D = \frac { 1 } { 3 } B C $$,$$ C E = \frac { 1 } { 3 } A C $$,AD与BE交于点O,若△ABC的面积为12,求△ABO的面积。
(3)如图③,△ABC的面积等于35,AE=ED,BD=3DC,求图中阴影部分的面积。
9
。(2)如图②,D,E分别在△ABC的边BC,AC上,$$ C D = \frac { 1 } { 3 } B C $$,$$ C E = \frac { 1 } { 3 } A C $$,AD与BE交于点O,若△ABC的面积为12,求△ABO的面积。
(3)如图③,△ABC的面积等于35,AE=ED,BD=3DC,求图中阴影部分的面积。
15
答案:
(1) 9 解析: 连接 $ OC $,则 $ S_{\triangle BOD} = S_{\triangle COD}$,$ S_{\triangle AOE} = S_{\triangle COE}$,而 $ S_{\triangle ADC} = S_{\triangle BEC} = \frac{1}{2}S_{\triangle ABC}$,$\therefore S_{\triangle ADC} - S_{四边形DOEC} = S_{\triangle BEC} - S_{四边形DOEC}$,即 $ S_{\triangle AOE} = S_{\triangle BOD}$。$\therefore S_{\triangle EOC} = S_{\triangle COD} = S_{\triangle AOE} = S_{\triangle BOD} = \frac{1}{3}S_{\triangle ADC} = \frac{1}{3} \times \frac{1}{2}S_{\triangle ABC} = \frac{1}{6}S_{\triangle ABC}$,$ S_{\triangle AOC} = S_{\triangle BOC} = \frac{1}{3}S_{\triangle ABC}$,$\therefore S_{\triangle ABC} = 3S_{\triangle ABO} = 9$。
(2) 连接 $ OC $。$\because CD = \frac{1}{3}BC$,$ CE = \frac{1}{3}AC$,$\therefore S_{\triangle ACD} = S_{\triangle BCE} = \frac{1}{3}S_{\triangle ABC} = 4$。又 $\because S_{\triangle ACD} - S_{四边形ODCE} = S_{\triangle BCE} - S_{四边形ODCE}$,$\therefore S_{\triangle AOE} = S_{\triangle BOD}$。又 $\because AE : EC = 2 : 1 = BD : DC$,$\therefore S_{\triangle OEC} = \frac{1}{2}S_{\triangle AOE}$,$ S_{\triangle ODC} = \frac{1}{2}S_{\triangle BOD}$,$\therefore S_{\triangle OEC} = S_{\triangle ODC}$。$\therefore S_{\triangle BCE} = S_{\triangle BOD} + S_{\triangle ODC} + S_{\triangle OEC} = 4S_{\triangle ODC} = 4$,即 $ S_{\triangle ODC} = 1$。$\therefore S_{\triangle AOE} = S_{\triangle BOD} = 2$,$\therefore S_{\triangle ABO} = S_{\triangle ABC} - S_{\triangle ADC} - S_{\triangle BOD} = 12 - 4 - 2 = 6$。
(3) 连接 $ DF $,由题意得 $ S_{\triangle AEF} = S_{\triangle EFD}$,$ S_{\triangle ABE} = S_{\triangle BED}$,$ S_{\triangle BDF} = 3S_{\triangle FDC}$,$ S_{\triangle ABD} = 3S_{\triangle ADC}$。设 $\triangle AEF$ 的面积为 $ x $,$\triangle BDE$ 的面积为 $ y $,则 $ x + x + y + y + \frac{1}{3}(x + y) = 35$,解得 $ x + y = 15$,$\therefore$ 阴影部分的面积为 15。
(1) 9 解析: 连接 $ OC $,则 $ S_{\triangle BOD} = S_{\triangle COD}$,$ S_{\triangle AOE} = S_{\triangle COE}$,而 $ S_{\triangle ADC} = S_{\triangle BEC} = \frac{1}{2}S_{\triangle ABC}$,$\therefore S_{\triangle ADC} - S_{四边形DOEC} = S_{\triangle BEC} - S_{四边形DOEC}$,即 $ S_{\triangle AOE} = S_{\triangle BOD}$。$\therefore S_{\triangle EOC} = S_{\triangle COD} = S_{\triangle AOE} = S_{\triangle BOD} = \frac{1}{3}S_{\triangle ADC} = \frac{1}{3} \times \frac{1}{2}S_{\triangle ABC} = \frac{1}{6}S_{\triangle ABC}$,$ S_{\triangle AOC} = S_{\triangle BOC} = \frac{1}{3}S_{\triangle ABC}$,$\therefore S_{\triangle ABC} = 3S_{\triangle ABO} = 9$。
(2) 连接 $ OC $。$\because CD = \frac{1}{3}BC$,$ CE = \frac{1}{3}AC$,$\therefore S_{\triangle ACD} = S_{\triangle BCE} = \frac{1}{3}S_{\triangle ABC} = 4$。又 $\because S_{\triangle ACD} - S_{四边形ODCE} = S_{\triangle BCE} - S_{四边形ODCE}$,$\therefore S_{\triangle AOE} = S_{\triangle BOD}$。又 $\because AE : EC = 2 : 1 = BD : DC$,$\therefore S_{\triangle OEC} = \frac{1}{2}S_{\triangle AOE}$,$ S_{\triangle ODC} = \frac{1}{2}S_{\triangle BOD}$,$\therefore S_{\triangle OEC} = S_{\triangle ODC}$。$\therefore S_{\triangle BCE} = S_{\triangle BOD} + S_{\triangle ODC} + S_{\triangle OEC} = 4S_{\triangle ODC} = 4$,即 $ S_{\triangle ODC} = 1$。$\therefore S_{\triangle AOE} = S_{\triangle BOD} = 2$,$\therefore S_{\triangle ABO} = S_{\triangle ABC} - S_{\triangle ADC} - S_{\triangle BOD} = 12 - 4 - 2 = 6$。
(3) 连接 $ DF $,由题意得 $ S_{\triangle AEF} = S_{\triangle EFD}$,$ S_{\triangle ABE} = S_{\triangle BED}$,$ S_{\triangle BDF} = 3S_{\triangle FDC}$,$ S_{\triangle ABD} = 3S_{\triangle ADC}$。设 $\triangle AEF$ 的面积为 $ x $,$\triangle BDE$ 的面积为 $ y $,则 $ x + x + y + y + \frac{1}{3}(x + y) = 35$,解得 $ x + y = 15$,$\therefore$ 阴影部分的面积为 15。
3. 如图①,我们知道若直线$$ l _ { 1 } // l _ { 2 } $$,则△ABC与△ABD的面积相等;反之,若△ABC与△ABD的面积相等,则也可得到直线$$ l _ { 1 } // l _ { 2 } $$,利用此知识解答以下问题:
如图②,已知AB//CD,AD//CB,P,Q分别是线段BC,CD上的点,$$ C P = \frac { 1 } { 3 } B C $$,$$ C Q = \frac { 1 } { 3 } C D $$,E,F分别是线段AB,AD上的点,$$ A E = \frac { 2 } { 3 } A B $$,$$ A F = \frac { 2 } { 3 } A D $$,连接PQ,EF,若△PCQ的面积是4。
(1)求四边形ABCD的面积;
(2)求证:PQ//EF。

如图②,已知AB//CD,AD//CB,P,Q分别是线段BC,CD上的点,$$ C P = \frac { 1 } { 3 } B C $$,$$ C Q = \frac { 1 } { 3 } C D $$,E,F分别是线段AB,AD上的点,$$ A E = \frac { 2 } { 3 } A B $$,$$ A F = \frac { 2 } { 3 } A D $$,连接PQ,EF,若△PCQ的面积是4。
(1)求四边形ABCD的面积;
(2)求证:PQ//EF。
答案:
(1) 如图所示,连接 $ AC $,$ BD $ 交于 $ O $,连接 $ PD $。$\because CQ = \frac{1}{3}CD$,$\triangle CPD$ 和 $\triangle CPQ$ 同高(分别以 $ CD $,$ CQ $ 为底),
$\therefore S_{\triangle PCD} = 3S_{\triangle PCQ} = 12$,同理可得 $ S_{\triangle BCD} = 3S_{\triangle PCD} = 36$。$\because AD // BC$,$\therefore S_{\triangle ABC} = S_{\triangle BCD}$,$\therefore S_{\triangle ABO} = S_{\triangle CDO}$,同理可得 $ S_{\triangle ADO} = S_{\triangle BCO}$,$\therefore S_{\triangle ABD} = S_{\triangle CBD} = 36$,$\therefore S_{四边形ABCD} = S_{\triangle ABD} + S_{\triangle CBD} = 72$。
(2) 如图所示,连接 $ BF $,$ DE $,$ BQ $,由
(1) 得 $ S_{\triangle BDP} = \frac{2}{3}S_{\triangle BCD} = 24$,$ S_{\triangle BDQ} = \frac{2}{3}S_{\triangle BCD} = 24$,$\therefore S_{\triangle BDP} = S_{\triangle BDQ}$,$\therefore PQ // BD$,同理可证 $ EF // BD$,$\therefore PQ // EF$。
(1) 如图所示,连接 $ AC $,$ BD $ 交于 $ O $,连接 $ PD $。$\because CQ = \frac{1}{3}CD$,$\triangle CPD$ 和 $\triangle CPQ$ 同高(分别以 $ CD $,$ CQ $ 为底),
(2) 如图所示,连接 $ BF $,$ DE $,$ BQ $,由
(1) 得 $ S_{\triangle BDP} = \frac{2}{3}S_{\triangle BCD} = 24$,$ S_{\triangle BDQ} = \frac{2}{3}S_{\triangle BCD} = 24$,$\therefore S_{\triangle BDP} = S_{\triangle BDQ}$,$\therefore PQ // BD$,同理可证 $ EF // BD$,$\therefore PQ // EF$。
查看更多完整答案,请扫码查看