第38页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
6. 如图,AD是$\triangle ABC$的角平分线,$DF⊥AB$,垂足为F,$DE=DG,\triangle ADG$和$\triangle AED$的面积分别为50和39,则$\triangle EDF$的面积为____.

答案:
5.5 解析:如图,作$DM = DE$交$AC$于点$M$,过点$D$作$DN\perp AC$于点$N$。$\because DE = DG$,$\therefore DM = DG$。在$Rt\triangle DNM$和$Rt\triangle DNG$中,$DM = DG$,$DN = DN$,$\therefore Rt\triangle DNM\cong Rt\triangle DNG(HL)$。$\because AD$是$\triangle ABC$的角平分线,$DF\perp AB$,$\therefore$在$\triangle AFD$和$\triangle AND$中,$\begin{cases}\angle AFD = \angle AND\\\angle DAF = \angle DAN\\AD = AD\end{cases}$,$\therefore \triangle AFD\cong \triangle AND(AAS)$,$\therefore DF = DN$。
在$Rt\triangle DEF$和$Rt\triangle DMN$中,$DF = DN$,$DE = DM$,$\therefore Rt\triangle DEF\cong Rt\triangle DMN(HL)$,$\therefore S_{\triangle AMD}=S_{\triangle AED}$。$\because \triangle ADG$和$\triangle AED$的面积分别为 50 和 39,$\therefore S_{\triangle MDG}=S_{\triangle ADG}-S_{\triangle ADM}=50 - 39 = 11$,$\therefore S_{\triangle DNM}=S_{\triangle DNG}=S_{\triangle EDF}=\frac{1}{2}S_{\triangle MDG}=\frac{1}{2}\times11 = 5.5$。

归纳总结:角平分线模型
①如图①,过角平分线上一点作角两边的垂线段,构造 AAS 型全等;
②如图②,在角的两边上截长或补短,在角平分线两侧构造 SAS 型全等;
③如图③,当垂线段与角平分线垂直时,延长垂线段,构造 ASA 型全等(常与等腰三角形结合);
④如图④,过角平分线上一点作角的一边的平行线,构造等腰三角形。



5.5 解析:如图,作$DM = DE$交$AC$于点$M$,过点$D$作$DN\perp AC$于点$N$。$\because DE = DG$,$\therefore DM = DG$。在$Rt\triangle DNM$和$Rt\triangle DNG$中,$DM = DG$,$DN = DN$,$\therefore Rt\triangle DNM\cong Rt\triangle DNG(HL)$。$\because AD$是$\triangle ABC$的角平分线,$DF\perp AB$,$\therefore$在$\triangle AFD$和$\triangle AND$中,$\begin{cases}\angle AFD = \angle AND\\\angle DAF = \angle DAN\\AD = AD\end{cases}$,$\therefore \triangle AFD\cong \triangle AND(AAS)$,$\therefore DF = DN$。
在$Rt\triangle DEF$和$Rt\triangle DMN$中,$DF = DN$,$DE = DM$,$\therefore Rt\triangle DEF\cong Rt\triangle DMN(HL)$,$\therefore S_{\triangle AMD}=S_{\triangle AED}$。$\because \triangle ADG$和$\triangle AED$的面积分别为 50 和 39,$\therefore S_{\triangle MDG}=S_{\triangle ADG}-S_{\triangle ADM}=50 - 39 = 11$,$\therefore S_{\triangle DNM}=S_{\triangle DNG}=S_{\triangle EDF}=\frac{1}{2}S_{\triangle MDG}=\frac{1}{2}\times11 = 5.5$。
归纳总结:角平分线模型
①如图①,过角平分线上一点作角两边的垂线段,构造 AAS 型全等;
②如图②,在角的两边上截长或补短,在角平分线两侧构造 SAS 型全等;
③如图③,当垂线段与角平分线垂直时,延长垂线段,构造 ASA 型全等(常与等腰三角形结合);
④如图④,过角平分线上一点作角的一边的平行线,构造等腰三角形。
7. 已知$\triangle ABC$中,$∠A=60^{\circ },BD,CE$分别平分$∠ABC$和$∠ACB$,BD,CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.

答案:
$BE + CD = BC$。理由如下:如图,在$BC$上截取$BF = BE$,连接$OF$,$AO$,$\because BD$平分$\angle ABC$,$\therefore \angle OBE = \angle OBF$。又$\because OB = OB$,$\therefore \triangle BEO\cong \triangle BFO(SAS)$,$\therefore \angle 1 = \angle 2$。$\because \angle BAC = 60^{\circ}$,$\therefore \angle BOC = 180^{\circ}-\frac{1}{2}\times(\angle ABC + \angle ACB)=180^{\circ}-\frac{1}{2}\times(180^{\circ}-60^{\circ}) = 120^{\circ}$,$\therefore \angle DOE = 120^{\circ}$,$\therefore \angle BAC + \angle DOE = 180^{\circ}$。$\because \angle AEO + \angle AOE + \angle EAO + \angle DAO + \angle DOA + \angle ADO = 180^{\circ}+180^{\circ}=360^{\circ}$,$\therefore \angle AEO + \angle ADO = 180^{\circ}$,$\therefore \angle 1 + \angle 4 = 180^{\circ}$。$\because \angle 2 + \angle 3 = 180^{\circ}$,且$\angle 1 = \angle 2$,$\therefore \angle 3 = \angle 4$。又$\because \angle DCO = \angle FCO$,$CO = CO$,$\therefore \triangle CDO\cong \triangle CFO(AAS)$,$\therefore CD = CF$,$\therefore BC = BF + CF = BE + CD$。
$BE + CD = BC$。理由如下:如图,在$BC$上截取$BF = BE$,连接$OF$,$AO$,$\because BD$平分$\angle ABC$,$\therefore \angle OBE = \angle OBF$。又$\because OB = OB$,$\therefore \triangle BEO\cong \triangle BFO(SAS)$,$\therefore \angle 1 = \angle 2$。$\because \angle BAC = 60^{\circ}$,$\therefore \angle BOC = 180^{\circ}-\frac{1}{2}\times(\angle ABC + \angle ACB)=180^{\circ}-\frac{1}{2}\times(180^{\circ}-60^{\circ}) = 120^{\circ}$,$\therefore \angle DOE = 120^{\circ}$,$\therefore \angle BAC + \angle DOE = 180^{\circ}$。$\because \angle AEO + \angle AOE + \angle EAO + \angle DAO + \angle DOA + \angle ADO = 180^{\circ}+180^{\circ}=360^{\circ}$,$\therefore \angle AEO + \angle ADO = 180^{\circ}$,$\therefore \angle 1 + \angle 4 = 180^{\circ}$。$\because \angle 2 + \angle 3 = 180^{\circ}$,且$\angle 1 = \angle 2$,$\therefore \angle 3 = \angle 4$。又$\because \angle DCO = \angle FCO$,$CO = CO$,$\therefore \triangle CDO\cong \triangle CFO(AAS)$,$\therefore CD = CF$,$\therefore BC = BF + CF = BE + CD$。
8. 已知点C是$∠MAN$平分线上一点,$∠BCD$的两边CB,CD分别与射线AM,AN相交于B,D两点,且$∠ABC+∠ADC=180^{\circ }$.过点C作$CE⊥AB$,垂足为E.
(1)如图①,当点E在线段AB上时,求证:$BC=DC$;
(2)如图②,当点E在线段AB的延长线上时,探究线段AB,AD与BE之间的数量关系;
(3)如图③,在(2)的条件下,若$∠MAN=60^{\circ }$,连接BD,作$∠ABD$的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若$BG=1,DF=2$,求线段DB的长.

(1)如图①,当点E在线段AB上时,求证:$BC=DC$;
(2)如图②,当点E在线段AB的延长线上时,探究线段AB,AD与BE之间的数量关系;
(3)如图③,在(2)的条件下,若$∠MAN=60^{\circ }$,连接BD,作$∠ABD$的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若$BG=1,DF=2$,求线段DB的长.
答案:
(1)如图①,过点$C$作$CF\perp AD$,垂足为$F$。$\because AC$平分$\angle MAN$,$CE\perp AB$,$CF\perp AD$,$\therefore CE = CF$。$\because \angle CBE + \angle ADC = 180^{\circ}$,$\angle CDF + \angle ADC = 180^{\circ}$,$\therefore \angle CBE = \angle CDF$。在$\triangle BCE$和$\triangle DCF$中,$\begin{cases}\angle CBE = \angle CDF\\\angle CEB = \angle CFD = 90^{\circ}\\CE = CF\end{cases}$,$\therefore \triangle BCE\cong \triangle DCF(AAS)$,$\therefore BC = DC$。



(2)$AD - AB = 2BE$,理由如下:如图②,过点$C$作$CF\perp AD$,垂足为$F$。$\because AC$平分$\angle MAN$,$CE\perp AB$,$CF\perp AD$,$\therefore CE = CF$。又$\because AC = AC$,$\therefore Rt\triangle ACF\cong Rt\triangle ACE(HL)$,$\therefore AF = AE$。$\because \angle ABC + \angle ADC = 180^{\circ}$,$\angle ABC + \angle CBE = 180^{\circ}$,$\therefore \angle CDF = \angle CBE$。在$\triangle BCE$和$\triangle DCF$中,$\begin{cases}\angle CBE = \angle CDF\\\angle CEB = \angle CFD = 90^{\circ}\\CE = CF\end{cases}$,$\therefore \triangle BCE\cong \triangle DCF(AAS)$,$\therefore DF = BE$,$\therefore AD = AF + DF = AE + DF = AB + BE + DF = AB + 2BE$,$\therefore AD - AB = 2BE$。
(3)如图③,在$BD$上截取$BH = BG$,连接$OH$。$\because BH = BG$,$\angle OBH = \angle OBG$,$OB = OB$,$\therefore \triangle OBH\cong \triangle OBG(SAS)$,$\therefore \angle OHB = \angle OGB$。$\because AO$是$\angle MAN$的平分线,$BO$是$\angle ABD$的平分线,$\therefore$点$O$到$AD$,$AB$,$BD$的距离相等,$\therefore \angle ODH = \angle ODF$。$\because \angle OHB = \angle ODH + \angle DOH$,$\angle OGB = \angle ODF + \angle DAB$,$\therefore \angle DOH = \angle DAB = 60^{\circ}$,$\therefore \angle GOH = 120^{\circ}$,$\therefore \angle BOG = \angle BOH = 60^{\circ}$,$\therefore \angle DOF = \angle BOG = 60^{\circ}$,$\therefore \angle DOH = \angle DOF$。在$\triangle ODH$和$\triangle ODF$中,$\begin{cases}\angle DOH = \angle DOF\\OD = OD\\\angle ODH = \angle ODF\end{cases}$,$\therefore \triangle ODH\cong \triangle ODF(ASA)$,$\therefore DH = DF$,$\therefore DB = DH + BH = DF + BG = 2 + 1 = 3$。
(1)如图①,过点$C$作$CF\perp AD$,垂足为$F$。$\because AC$平分$\angle MAN$,$CE\perp AB$,$CF\perp AD$,$\therefore CE = CF$。$\because \angle CBE + \angle ADC = 180^{\circ}$,$\angle CDF + \angle ADC = 180^{\circ}$,$\therefore \angle CBE = \angle CDF$。在$\triangle BCE$和$\triangle DCF$中,$\begin{cases}\angle CBE = \angle CDF\\\angle CEB = \angle CFD = 90^{\circ}\\CE = CF\end{cases}$,$\therefore \triangle BCE\cong \triangle DCF(AAS)$,$\therefore BC = DC$。
(2)$AD - AB = 2BE$,理由如下:如图②,过点$C$作$CF\perp AD$,垂足为$F$。$\because AC$平分$\angle MAN$,$CE\perp AB$,$CF\perp AD$,$\therefore CE = CF$。又$\because AC = AC$,$\therefore Rt\triangle ACF\cong Rt\triangle ACE(HL)$,$\therefore AF = AE$。$\because \angle ABC + \angle ADC = 180^{\circ}$,$\angle ABC + \angle CBE = 180^{\circ}$,$\therefore \angle CDF = \angle CBE$。在$\triangle BCE$和$\triangle DCF$中,$\begin{cases}\angle CBE = \angle CDF\\\angle CEB = \angle CFD = 90^{\circ}\\CE = CF\end{cases}$,$\therefore \triangle BCE\cong \triangle DCF(AAS)$,$\therefore DF = BE$,$\therefore AD = AF + DF = AE + DF = AB + BE + DF = AB + 2BE$,$\therefore AD - AB = 2BE$。
(3)如图③,在$BD$上截取$BH = BG$,连接$OH$。$\because BH = BG$,$\angle OBH = \angle OBG$,$OB = OB$,$\therefore \triangle OBH\cong \triangle OBG(SAS)$,$\therefore \angle OHB = \angle OGB$。$\because AO$是$\angle MAN$的平分线,$BO$是$\angle ABD$的平分线,$\therefore$点$O$到$AD$,$AB$,$BD$的距离相等,$\therefore \angle ODH = \angle ODF$。$\because \angle OHB = \angle ODH + \angle DOH$,$\angle OGB = \angle ODF + \angle DAB$,$\therefore \angle DOH = \angle DAB = 60^{\circ}$,$\therefore \angle GOH = 120^{\circ}$,$\therefore \angle BOG = \angle BOH = 60^{\circ}$,$\therefore \angle DOF = \angle BOG = 60^{\circ}$,$\therefore \angle DOH = \angle DOF$。在$\triangle ODH$和$\triangle ODF$中,$\begin{cases}\angle DOH = \angle DOF\\OD = OD\\\angle ODH = \angle ODF\end{cases}$,$\therefore \triangle ODH\cong \triangle ODF(ASA)$,$\therefore DH = DF$,$\therefore DB = DH + BH = DF + BG = 2 + 1 = 3$。
查看更多完整答案,请扫码查看