2025年学霸题中题八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学霸题中题八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年学霸题中题八年级数学上册人教版》

9. 甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则$t_{1}$小时后,快者追上慢者,若相向而行,则$t_{2}$小时后,两人相遇,那么快者速度是慢者速度的 (
C
)
A. $\frac {t_{1}}{t_{1}+t_{2}}$倍
B. $\frac {t_{1}+t_{2}}{t_{1}}$倍
C. $\frac {t_{1}+t_{2}}{t_{1}-t_{2}}$倍
D. $\frac {t_{1}-t_{2}}{t_{1}+t_{2}}$倍
答案: C 解析:快者的速度为$ \frac{1}{2}(\frac{8}{t_{1}} + \frac{8}{t_{2}}) = \frac{4t_{1} + 4t_{2}}{t_{1}t_{2}} $,慢者的速度为$ \frac{1}{2}(\frac{8}{t_{2}} - \frac{8}{t_{1}}) = \frac{4t_{1} - 4t_{2}}{t_{1}t_{2}} $,则快者速度是慢者速度的$ \frac{4t_{1} + 4t_{2}}{t_{1}t_{2}} \div \frac{4t_{1} - 4t_{2}}{t_{1}t_{2}} = \frac{t_{1} + t_{2}}{t_{1} - t_{2}} $倍。故选C。
10. 如果x等于它的倒数,那么$\frac {x^{2}-x-6}{x+3}÷\frac {x-3}{x^{2}+x-6}$的值是
-3
.
答案: -3 解析:由题意得$ x = \frac{1}{x} $,所以$ x^{2} = 1 $。原式$ = \frac{(x - 3)(x + 2)}{x + 3} \cdot \frac{(x - 2)(x + 3)}{x - 3} = x^{2} - 4 = 1 - 4 = -3 $。
11. (百色中考改编)已知$a=b+2024$,则分式$\frac {2}{a-b}\cdot \frac {a^{2}-b^{2}}{a^{2}+2ab+b^{2}}÷\frac {1}{a^{2}-b^{2}}$的值为
4048
.
答案: 4048 解析:原式$ = \frac{2}{a - b} \cdot \frac{(a - b)(a + b)}{(a + b)^{2}} \cdot (a - b)(a + b) = 2(a - b) $。$ \because a = b + 2024 $,$ \therefore a - b = 2024 $,$ \therefore $原式$ = 2 \times 2024 = 4048 $。
12. (2024·邢台月考)甲瓶盐水含盐率为$\frac {1}{a}$,乙瓶盐水含盐率为$\frac {1}{b}$,从甲、乙两瓶中各取质量相等的盐水混合制成新盐水的含盐率为
$\frac{a + b}{2ab}$
.
答案: $ \frac{a + b}{2ab} $ 解析:不妨设从甲、乙两瓶中各取质量相等的盐水$ xg $,则混合制成新盐水的含盐率为$ \frac{\frac{1}{a}x + \frac{1}{b}x}{2x} = \frac{a + b}{2ab} $。
13. (山东中考)(1)计算:$(a-b)(a^{2}+ab+b^{2})=$
$a^{3}-b^{3}$

(2)利用所学知识以及(1)所得等式,化简:$\frac {m^{3}-n^{3}}{m^{2}+mn+n^{2}}÷\frac {m^{2}-n^{2}}{m^{2}+2mn+n^{2}}=$
$m+n$

答案:
(1) 原式$ = a^{3} + a^{2}b + ab^{2} - a^{2}b - ab^{2} - b^{3} = a^{3} - b^{3} $。
(2) 原式$ = \frac{(m - n)(m^{2} + mn + n^{2})}{m^{2} + mn + n^{2}} \cdot \frac{(m + n)^{2}}{(m + n)(m - n)} = m + n $。
14. 化简式子$\frac {x^{2}-1}{x^{2}+2x}÷\frac {x-1}{x^{2}}$,并判断当x满足不等式组$\left\{\begin{array}{l} x+2<1,\\ 2(x+1)>-2\end{array}\right. $时该式子的符号.
答案: $ \frac{x^{2} - 1}{x^{2} + 2x} \div \frac{x - 1}{x^{2}} = \frac{(x + 1)(x - 1)}{x(x + 2)} \cdot \frac{x^{2}}{x - 1} = \frac{x(x + 1)}{x + 2} $。$ \because x $满足不等式组$ \begin{cases} x + 2 < 1, \\ 2(x + 1) > -2, \end{cases} $ $ \therefore -2 < x < -1 $,$ \therefore x < 0 $,$ x + 1 < 0 $,$ x + 2 > 0 $,$ \therefore \frac{x(x + 1)}{x + 2} > 0 $。故该式子的符号为正。
15. 计算:$(a+\frac {1}{a})(a^{2}+\frac {1}{a^{2}})(a^{4}+\frac {1}{a^{4}})(a^{8}+\frac {1}{a^{8}})(a^{2}-1).$
答案: $ \because a^{2} - 1 = a(a - \frac{1}{a}) $,$ \therefore $原式$ = a(a - \frac{1}{a})(a + \frac{1}{a})(a^{2} + \frac{1}{a^{2}})(a^{4} + \frac{1}{a^{4}}) \cdot (a^{8} + \frac{1}{a^{8}}) = a(a^{2} - \frac{1}{a^{2}})(a^{2} + \frac{1}{a^{2}})(a^{4} + \frac{1}{a^{4}})(a^{8} + \frac{1}{a^{8}}) = a(a^{4} - \frac{1}{a^{4}})(a^{4} + \frac{1}{a^{4}})(a^{8} + \frac{1}{a^{8}}) = a(a^{8} - \frac{1}{a^{8}}) \cdot (a^{8} + \frac{1}{a^{8}}) = a(a^{16} - \frac{1}{a^{16}}) = a^{17} - \frac{1}{a^{15}} $。
16. 如图,A玉米试验田是半径为R m的圆去掉宽为1m的出水沟后剩下的部分,B玉米试验田是半径为R m的圆中间去掉半径为1m的圆后剩下的部分,两块试验田的玉米都收了450 kg.
(1)哪块试验田的单位面积产量高?
A玉米试验田

(2)高的单位面积产量是低的单位面积产量的多少倍?
$\frac{R + 1}{R - 1}$
答案:
(1) A玉米试验田的面积是$ \pi(R - 1)^{2}m^{2} $,单位面积产量是$ \frac{450}{\pi(R - 1)^{2}}kg/m^{2} $;B玉米试验田的面积是$ \pi(R^{2} - 1^{2})m^{2} $,单位面积产量是$ \frac{450}{\pi(R^{2} - 1^{2})}kg/m^{2} $。$ \because (R^{2} - 1^{2}) - (R - 1)^{2} = 2(R - 1) > 0 $,$ \therefore 0 < (R - 1)^{2} < R^{2} - 1^{2} $,$ \therefore \frac{450}{\pi(R^{2} - 1^{2})} < \frac{450}{\pi(R - 1)^{2}} $。$ \therefore $A玉米试验田的单位面积产量高。
(2) $ \because \frac{450}{\pi(R - 1)^{2}} \div \frac{450}{\pi(R^{2} - 1^{2})} = \frac{450}{\pi(R - 1)^{2}} \times \frac{\pi(R + 1)(R - 1)}{450} = \frac{R + 1}{R - 1} $,$ \therefore $高的单位面积产量是低的单位面积产量的$ \frac{R + 1}{R - 1} $倍。

查看更多完整答案,请扫码查看

关闭