2025年高考帮数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高考帮数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年高考帮数学》

第87页
训练2
(1)[2023芜湖模拟]已知函数$f(x) = A\cos(\omega x + \varphi) + b(A > 0,\omega > 0,|\varphi| < \frac{\pi}{2})$的部分图象如图所示,将函数$f(x)$的图象上各点的横坐标拉伸为原来的3倍(纵坐标不变),再向左平移$\frac{\pi}{2}$个单位长度,得到函数$g(x)$的图象,则函数$g(x)$的单调递增区间为 ( )
A. $[-\frac{3\pi}{2} + 3k\pi,3k\pi](k\in\mathbf{Z})$
B. $[3k\pi,3k\pi + \frac{3\pi}{2}](k\in\mathbf{Z})$
C. $[-\frac{7\pi}{4} + 3k\pi,-\frac{\pi}{4} + 3k\pi](k\in\mathbf{Z})$
D. $[-\frac{\pi}{4} + 3k\pi,\frac{5\pi}{4} + 3k\pi](k\in\mathbf{Z})$
3
(2)[2023山东省泰安一中模拟]函数$f(x) = \sin(\omega x + \varphi)(\omega > 0,0 < \varphi < \frac{\pi}{2})$在区间$[-\frac{\pi}{6},\frac{5\pi}{6}]$上的图象如图所示,将该函数图象上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移$\theta(\theta > 0)$个单位长度后,所得到的图象关于原点对称,则$\theta$的最小值为 ( )
A. $\frac{\pi}{3}$ B. $\frac{\pi}{6}$ C. $\frac{\pi}{12}$ D. $\frac{7\pi}{24}$
答案:
(1)C依题意,得$\begin{cases}A + b = 1\\-A + b = - 3\end{cases}$,解得$\begin{cases}A = 2\\b = - 1\end{cases}$,$\therefore f(x) = 2\cos(\omega x + \varphi) - 1$,而$f(\frac{\pi}{12}) = 1$,$f(\frac{\pi}{3}) = - 1$,设$T$是$f(x)$的最小正周期,$\therefore \frac{T}{4} = \frac{\pi}{3} - \frac{\pi}{12} = \frac{\pi}{4}$,$\therefore T = \pi$,$\therefore \omega = \frac{2\pi}{\pi} = 2$,$\therefore f(x) = 2\cos(2x + \varphi) - 1$.又$2\cos(\frac{\pi}{6} + \varphi) - 1 = 1$,$\therefore \frac{\pi}{6} + \varphi = 2k\pi(k \in \mathbf{Z})$,$\because |\varphi| < \frac{\pi}{2}$,$\therefore \varphi = - \frac{\pi}{6}$,$\therefore f(x) = 2\cos(2x - \frac{\pi}{6}) - 1$.将函数$f(x)$的图象上各点的横坐标拉伸为原来的3倍,得到$y = 2\cos(\frac{2}{3}x - \frac{\pi}{6}) - 1$的图象,再向左平移$\frac{\pi}{2}$个单位长度,得到$g(x) = 2\cos(\frac{2}{3}x + \frac{\pi}{3} - \frac{\pi}{6}) - 1 = 2\cos(\frac{2}{3}x + \frac{\pi}{6}) - 1$的图象,令$-\pi + 2k\pi\leqslant\frac{2}{3}x + \frac{\pi}{6}\leqslant 2k\pi(k \in \mathbf{Z})$,解得$-\frac{7\pi}{4} + 3k\pi\leqslant x\leqslant - \frac{\pi}{4} + 3k\pi(k \in \mathbf{Z})$,$\therefore$函数$g(x)$的单调递增区间为$[-\frac{7\pi}{4} + 3k\pi, - \frac{\pi}{4} + 3k\pi](k \in \mathbf{Z})$.
(2)C 由题图可知函数$f(x)$的最小正周期$T = \frac{5\pi}{6} - (-\frac{\pi}{6}) = \pi$,所以$\omega = \frac{2\pi}{\pi} = 2$,又$f(\frac{\pi}{12}) = 1$,故$\sin(\frac{\pi}{6} + \varphi) = 1$,由于$0 < \varphi < \frac{\pi}{2}$,故$\varphi = \frac{\pi}{3}$,所以$f(x) = \sin(2x + \frac{\pi}{3})$.
将该函数图象上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移$\theta(\theta > 0)$个单位长度后,得到$y = \sin(4x - 4\theta + \frac{\pi}{3})$的图象,因为该函数图象关于原点对称,所以$y = \sin(4x - 4\theta + \frac{\pi}{3})$为奇函数,所以$- 4\theta + \frac{\pi}{3} = k\pi,k \in \mathbf{Z}$,解得$\theta = \frac{\pi}{12} - \frac{k\pi}{4},k \in \mathbf{Z}$,又$\theta > 0$,所以$\theta$的最小值为$\frac{\pi}{12}$,故选C.
例3
(1)[2022天津高考]已知$f(x) = \frac{1}{2}\sin 2x$,关于该函数有下面四个说法:
①$f(x)$的最小正周期为$2\pi$;②$f(x)$在$[-\frac{\pi}{4},\frac{\pi}{4}]$上单调递增;③当$x\in[-\frac{\pi}{6},\frac{\pi}{3}]$时,$f(x)$的取值范围为$[-\frac{\sqrt{3}}{4},\frac{\sqrt{3}}{4}]$;④$f(x)$的图象可由$g(x) = \frac{1}{2}\sin(2x + \frac{\pi}{4})$的图象向左平移$\frac{\pi}{8}$个单位长度得到.
以上四个说法中,正确的个数有 ( )
A. 1 B. 2 C. 3 D. 4
(2)[2023广东六校联考]已知函数$f(x) = A\sin(\omega x + \varphi)(A > 0,\omega > 0,|\varphi| < \frac{\pi}{2})$的部分图象如图所示,则下列说法正确的是 ( )
A. 直线$x = \pi$是$f(x)$图象的一条对称轴
B. $f(x)$图象的对称中心为$(-\frac{\pi}{12} + k\pi,0),k\in\mathbf{Z}$
C. $f(x)$在区间$[-\frac{\pi}{3},\frac{\pi}{6}]$上单调递增
D. 将$f(x)$的图象向左平移$\frac{\pi}{12}$个单位长度后,可得到一个奇函数的图象
答案:
(1)A①$f(x)$的最小正周期为$T = \frac{2\pi}{2} = \pi$,故①错误;
②解法一 当$-\frac{\pi}{2} + 2k\pi\leqslant 2x\leqslant\frac{\pi}{2} + 2k\pi,k \in \mathbf{Z}$,即$x \in [-\frac{\pi}{4} + k\pi,\frac{\pi}{4} + k\pi],k \in \mathbf{Z}$时,$f(x)$单调递增,又因为$[-\frac{\pi}{4},\frac{\pi}{4}] \subseteq [-\frac{\pi}{4} + k\pi,\frac{\pi}{4} + k\pi],k \in \mathbf{Z}$,故$f(x)$在$[-\frac{\pi}{4},\frac{\pi}{4}]$上单调递增,②正确;
解法二 当$x \in [-\frac{\pi}{4},\frac{\pi}{4}]$时,设$t = 2x \in [-\frac{\pi}{2},\frac{\pi}{2}]$,$y = \frac{1}{2}\sin t$在$[-\frac{\pi}{2},\frac{\pi}{2}]$上单调递增,②正确;
③当$x \in [-\frac{\pi}{6},\frac{\pi}{3}]$时,$2x \in [-\frac{\pi}{3},\frac{2\pi}{3}]$,$f(x) \in [-\frac{\sqrt{3}}{4},\frac{1}{2}]$,③错误;
④$f(x)$的图象可由$g(x) = \frac{1}{2}\sin(2x + \frac{\pi}{4}) = \frac{1}{2}\sin 2(x + \frac{\pi}{8})$的图象向右平移$\frac{\pi}{8}$个单位长度得到,④错误.故选A
(2)C 根据函数$f(x) = A\sin(\omega x + \varphi)(A > 0,\omega > 0,|\varphi| < \frac{\pi}{2})$的部分图象,可得$A = 2$,$\frac{1}{4}\cdot\frac{2\pi}{\omega} = \frac{5\pi}{12} - \frac{\pi}{6}$,所以$\omega = 2$.结合“五点作图法”及$|\varphi| < \frac{\pi}{2}$,可得$2\times\frac{\pi}{6} + \varphi = \frac{\pi}{2}$,所以$\varphi = \frac{\pi}{6}$,即$f(x) = 2\sin(2x + \frac{\pi}{6})$.令$x = \pi$,得$f(\pi) = 1$,不是函数的最值,故直线$x = \pi$不是$f(x)$图象的对称轴,故A错误;令$2x + \frac{\pi}{6} = k\pi,k \in \mathbf{Z}$,得$x = -\frac{\pi}{12} + \frac{k\pi}{2},k \in \mathbf{Z}$,故$f(x)$图象的对称中心为$(-\frac{\pi}{12} + \frac{k\pi}{2},0),k \in \mathbf{Z}$,故B错误;$x \in [-\frac{\pi}{3},\frac{\pi}{6}]$时,$2x + \frac{\pi}{6} \in [-\frac{\pi}{2},\frac{\pi}{2}]$,函数$f(x)$单调递增,故C正确;将$f(x)$的图象向左平移$\frac{\pi}{12}$个单位长度后,可得$y = 2\sin(2x + \frac{\pi}{3})$的图象,故D错误.故选C.
训练3
(1)[多选/2024江苏省南通市模拟]已知$(\frac{\pi}{3},0)$是函数$f(x) = \sin(\omega x + \frac{\pi}{3})(0 < \omega < 3)$图象的一个对称中心,则 ( )
A. $\omega = 2$
B. $x = \frac{\pi}{6}$是函数$f(x)$图象的一条对称轴
C. 将函数$f(x)$的图象向右平移$\frac{\pi}{6}$个单位长度后得到的图象关于原点对称
D. 函数$f(x)$在区间$[-\frac{\pi}{2},0]$上的最小值是$-\frac{\sqrt{3}}{2}$
(2)[多选/2024福建省漳州市一检]函数$f(x) = A\sin(\omega x + \varphi)(A > 0,\omega > 0,|\varphi| < \frac{\pi}{2})$的部分图象如图所示,则下列结论正确的是 ( )
A. $\omega = 2$
B. $y = f(x)$的图象关于直线$x = -\frac{5\pi}{12}$对称
C. 将$y = f(x)$的图象向右平移$\frac{\pi}{3}$个单位长度后,得到的图象关于原点对称
D. 若$y = f(\lambda x)(\lambda > 0)$在$[0,\pi]$上有且仅有一个零点,则$\lambda\in[\frac{1}{3},\frac{5}{6})$
2
答案:
(1)AC对于A,由题意得$\sin(\frac{\pi}{3}\omega + \frac{\pi}{3}) = 0$,故$\frac{\pi}{3}\omega + \frac{\pi}{3} = k\pi,k \in \mathbf{Z}$,解得$\omega = 3k - 1,k \in \mathbf{Z}$,又$0 < \omega < 3$,故$0 < 3k - 1 < 3$,解得$\frac{1}{3} < k < \frac{4}{3}$,所以$k = 1$,$\omega = 2$,A正确;
对于B,由选项A可得$f(x) = \sin(2x + \frac{\pi}{3})$,当$x = \frac{\pi}{6}$时,$f(\frac{\pi}{6}) = \sin(\frac{\pi}{3} + \frac{\pi}{3}) = \frac{\sqrt{3}}{2}$,故$x = \frac{\pi}{6}$不是函数$f(x)$图象的对称轴,B 错误;
对于C,将函数$f(x)$的图象向右平移$\frac{\pi}{6}$个单位长度后得到$g(x) = \sin[2(x - \frac{\pi}{6}) + \frac{\pi}{3}] = \sin 2x$的图象,易知$g(x)$为奇函数,其图象关于原点对称,C正确;
对于D,令$z = 2x + \frac{\pi}{3}$,当$x \in [-\frac{\pi}{2},0]$时,$z \in [-\frac{2\pi}{3},\frac{\pi}{3}]$,由于$y = \sin z$在区间$[-\frac{2\pi}{3},\frac{\pi}{3}]$上的最小值为$- 1$,当且仅当$z = -\frac{\pi}{2}$时,等号成立,故$f(x)$在区间$[-\frac{\pi}{2},0]$上的最小值是$- 1$,D错误故选AC.
(2)ABD 由题图可得,$A = 2$,设$f(x)$的最小正周期为$T$,则$\frac{T}{4} = \frac{\pi}{3} - \frac{\pi}{12} = \frac{\pi}{4}$,故$T = \pi$,$\omega = 2$,$f(x) = 2\sin(2x + \varphi)$,A正确.
由$f(\frac{\pi}{12}) = 2\sin(\frac{\pi}{6} + \varphi) = 2$,得$\frac{\pi}{6} + \varphi = 2k\pi + \frac{\pi}{2},k \in \mathbf{Z}$,解得$\varphi = \frac{\pi}{3} + 2k\pi,k \in \mathbf{Z}$,又$|\varphi| < \frac{\pi}{2}$,所以$\varphi = \frac{\pi}{3}$,$f(x) = 2\sin(2x + \frac{\pi}{3})$.对于B,当$x = -\frac{5\pi}{12}$时,$2x + \frac{\pi}{3} = -\frac{\pi}{2}$,$y = f(x)$的图象关于直线$x = -\frac{5\pi}{12}$对称,B正确.
对于C,将$y = f(x)$的图象向右平移$\frac{\pi}{3}$个单位长度后,得到$y = 2\sin[2(x - \frac{\pi}{3}) + \frac{\pi}{3}] = 2\sin(2x - \frac{\pi}{3})$的图象,不关于原点对称,C 错误
对于D,设$f(\lambda x) = 2\sin(2\lambda x + \frac{\pi}{3})$在$[0,\pi]$上的唯一零点为$x_0$,则$2\lambda x_0 + \frac{\pi}{3} \in [\frac{\pi}{3},2\lambda\pi + \frac{\pi}{3}]$,$\therefore \pi\leqslant 2\lambda\pi + \frac{\pi}{3} < 2\pi$,$\therefore \frac{1}{3}\leqslant\lambda < \frac{5}{6}$,D正确,故选ABD.

查看更多完整答案,请扫码查看

关闭