2025年高考帮数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高考帮数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年高考帮数学》

第156页
2. 已知$A(1,0,0)$,$B(0,1,0)$,$C(0,0,1)$,则下列向量是平面$ABC$的一个法向量的是 ( )
A. $( - 1,1,1)$
B. $(1, - 1,1)$
C. $( - \frac{\sqrt{3}}{3}, - \frac{\sqrt{3}}{3}, - \frac{\sqrt{3}}{3})$
D. $(\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}, - \frac{\sqrt{3}}{3})$
答案: 2.C
3. 在空间直角坐标系中,$A(1,1, - 2)$,$B(1,2, - 3)$,$C( - 1,3,0)$,$D(x,y,z)(x,y,z\in\mathbf{R})$,若$A,B,C,D$四点共面,则 ( )
A. $2x + y + z = 1$
B. $x + y + z = 0$
C. $x - y + z = - 4$
D. $x + y - z = 0$
答案: 3.A
4. 已知向量$\boldsymbol{a}=(1,0, - 1)$,则下列向量中与$\boldsymbol{a}$成$60^{\circ}$夹角的是 ( )
A. $( - 1,1,0)$
B. $(1, - 1,0)$
C. $(0, - 1,1)$
D. $( - 1,0,1)$
答案: 4.B
5. [教材改编]已知$\boldsymbol{u}=(3,a + b,a - b)(a,b\in\mathbf{R})$是直线$l$的方向向量,$\boldsymbol{n}=(1,2,3)$是平面$\alpha$的法向量.若$l//\alpha$,则$a$与$b$的关系式为_______;若$l\perp\alpha$,则$a + b =$_______.
答案: 5.$5a - b + 3 = 0$ 6 由题意可知,若$l//\alpha$,则$u\cdot n = 0$,即$3 + 2(a + b)+3(a - b)=0$,整理得$5a - b + 3 = 0$.
若$l\perp\alpha$,则存在实数$\lambda$,使得$u = \lambda n$,即$(3,a + b,a - b)=\lambda(1,2,3)$,则$\begin{cases}3 = \lambda\\a + b = 2\lambda\\a - b = 3\lambda\end{cases}$,解得$\begin{cases}a=\frac{15}{2}\\b = -\frac{3}{2}\end{cases}$,则$a + b = 6$.
例1 (1)已知空间任意一点O和不共线的三点A,B,C,且有$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}+z\overrightarrow{OC}(x,y,z\in\mathbf{R})$,则$x = 2,y = - 3,z = 2$是$P,A,B,C$四点共面的                 (   )
A.充分不必要条件  B.必要不充分条件
C.充要条件     D.既不充分又不必要条件
(2)在平行六面体$ABCD - A_{1}B_{1}C_{1}D_{1}$中,$M$为$A_{1}C_{1}$与$B_{1}D_{1}$的交点,若$\overrightarrow{AB}=\boldsymbol{a},\overrightarrow{AD}=\boldsymbol{b},\overrightarrow{AA_{1}}=\boldsymbol{c}$,则下列向量中与$\overrightarrow{BM}$相等的向量是   (   )
A.$\frac{1}{2}\boldsymbol{a}+\frac{1}{2}\boldsymbol{b}+\boldsymbol{c}$    B.$-\frac{1}{2}\boldsymbol{a}+\frac{1}{2}\boldsymbol{b}+\boldsymbol{c}$
C.$-\frac{1}{2}\boldsymbol{a}-\frac{1}{2}\boldsymbol{b}+\boldsymbol{c}$   D.$\frac{1}{2}\boldsymbol{a}-\frac{1}{2}\boldsymbol{b}+\boldsymbol{c}$
答案:
例1
(1)A由题可知,要使P,A,B,C四点共面,则需x+y+z=1.当x=2,y= - 3,z=2时满足条件,所以x=2,y= - 3,z=2是P,A,B,C四点共面的充分条件;反之,当四点共面时,只要x+y+z=1即可,不一定要取x=2,y= - 3,z=2,所以x=2,y= - 3,z=2不是P,A,B,C四点共面的必要条件.故x=2,y= - 3,z=2是P,A,B,C四点共面的充分不必要条件.
(2)B 如图,在平行六面体ABCD - A₁B₁C₁D₁中,M为A₁C₁与B₁D₁的交点,故$\overrightarrow{A_{1}M}=\frac{1}{2}(\overrightarrow{A_{1}B_{1}}+\overrightarrow{A_{1}D_{1}})=\frac{1}{2}a+\frac{1}{2}b$,故
               
$\overrightarrow{BM}=\overrightarrow{BA}+\overrightarrow{AA_{1}}+\overrightarrow{A_{1}M}=-\overrightarrow{AB}+\overrightarrow{AA_{1}}+\frac{1}{2}a+\frac{1}{2}b=-a + c+\frac{1}{2}a+\frac{1}{2}b=-\frac{1}{2}a+\frac{1}{2}b + c$,故选B.
训练1 [多选]如图,在四面体$PABC$中,以下说法正确的有         (   )
A.若$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AB}$,则$\overrightarrow{BC}=3\overrightarrow{BD}$
B.若$Q$为$\triangle ABC$的重心,则$\overrightarrow{PQ}=\frac{1}{3}\overrightarrow{PA}+\frac{1}{3}\overrightarrow{PB}+\frac{1}{3}\overrightarrow{PC}$
C.若$\overrightarrow{PA}\cdot\overrightarrow{BC}=0,\overrightarrow{PC}\cdot\overrightarrow{AB}=0$,则$\overrightarrow{PB}\cdot\overrightarrow{AC}=0$
D.若四面体$PABC$各棱长都为2,M,N分别为$PA,BC$的中点,则$|\overrightarrow{MN}| =$______.
答案: 训练1ABC 对于A,$\because\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AB}$,$\therefore3\overrightarrow{AD}=\overrightarrow{AC}+2\overrightarrow{AB}$,$\therefore2\overrightarrow{AD}-2\overrightarrow{AB}=\overrightarrow{AC}-\overrightarrow{AD}$,$\therefore2\overrightarrow{BD}=\overrightarrow{DC}$,则$3\overrightarrow{BD}=\overrightarrow{BD}+\overrightarrow{DC}=\overrightarrow{BC}$,即$3\overrightarrow{BD}=\overrightarrow{BC}$,故A正确;
对于B,$\because Q$为$\triangle ABC$的重心,则$\overrightarrow{QA}+\overrightarrow{QB}+\overrightarrow{QC}=0$,$\therefore3\overrightarrow{PQ}+\overrightarrow{QA}+\overrightarrow{QB}+\overrightarrow{QC}=3\overrightarrow{PQ}$,$\therefore(\overrightarrow{PQ}+\overrightarrow{QA})+(\overrightarrow{PQ}+\overrightarrow{QB})+(\overrightarrow{PQ}+\overrightarrow{QC})=3\overrightarrow{PQ}$,则$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=3\overrightarrow{PQ}$,即$\overrightarrow{PQ}=\frac{1}{3}\overrightarrow{PA}+\frac{1}{3}\overrightarrow{PB}+\frac{1}{3}\overrightarrow{PC}$,故B正确;
对于C,若$\overrightarrow{PA}\cdot\overrightarrow{BC}=0$,$\overrightarrow{PC}\cdot\overrightarrow{AB}=0$,则$\overrightarrow{PA}\cdot\overrightarrow{BC}+\overrightarrow{PC}\cdot\overrightarrow{AB}=0$,$\therefore\overrightarrow{PA}\cdot\overrightarrow{BC}+\overrightarrow{PC}\cdot(\overrightarrow{AC}+\overrightarrow{CB})=0$,$\therefore\overrightarrow{PA}\cdot\overrightarrow{BC}+\overrightarrow{PC}\cdot\overrightarrow{AC}+\overrightarrow{PC}\cdot\overrightarrow{CB}=0$,即$\overrightarrow{PA}\cdot\overrightarrow{BC}+\overrightarrow{PC}\cdot\overrightarrow{AC}-\overrightarrow{PC}\cdot\overrightarrow{BC}=0$,$\therefore(\overrightarrow{PA}-\overrightarrow{PC})\cdot\overrightarrow{BC}+\overrightarrow{PC}\cdot\overrightarrow{AC}=0$,$\therefore\overrightarrow{CA}\cdot\overrightarrow{BC}+\overrightarrow{PC}\cdot\overrightarrow{AC}=0$,则$\overrightarrow{AC}\cdot\overrightarrow{CB}+\overrightarrow{PC}\cdot\overrightarrow{AC}=0$,$\therefore\overrightarrow{AC}\cdot(\overrightarrow{PC}+\overrightarrow{CB})=0$,即$\overrightarrow{AC}\cdot\overrightarrow{PB}=0$,故C正确;
对于D,连接PN,$\because\overrightarrow{MN}=\overrightarrow{PN}-\overrightarrow{PM}=\frac{1}{2}(\overrightarrow{PB}+\overrightarrow{PC})-\frac{1}{2}\overrightarrow{PA}=\frac{1}{2}(\overrightarrow{PB}+\overrightarrow{PC}-\overrightarrow{PA})$,$\therefore|\overrightarrow{MN}|=\frac{1}{2}|\overrightarrow{PB}+\overrightarrow{PC}-\overrightarrow{PA}|=\frac{1}{2}|\overrightarrow{PA}-\overrightarrow{PB}-\overrightarrow{PC}|$,又$|\overrightarrow{PA}-\overrightarrow{PB}-\overrightarrow{PC}|^{2}=\overrightarrow{PA}^{2}+\overrightarrow{PB}^{2}+\overrightarrow{PC}^{2}-2\overrightarrow{PA}\cdot\overrightarrow{PB}-2\overrightarrow{PA}\cdot\overrightarrow{PC}+2\overrightarrow{PC}\cdot\overrightarrow{PB}=2^{2}+2^{2}+2^{2}-2\times2\times2\times\frac{1}{2}-2\times2\times2\times\frac{1}{2}+2\times2\times2\times\frac{1}{2}=8$,$\therefore|\overrightarrow{MN}|=\sqrt{2}$,故D错误.故选ABC.
例2 (1)若向量$\boldsymbol{a}=(1,1,x),\boldsymbol{b}=(1,2,1),\boldsymbol{c}=(1,1,1)$,且$(\boldsymbol{c}-\boldsymbol{a})\cdot(2\boldsymbol{b})=-2$,则$x =$______.
(2)如图,已知直三棱柱$ABC - A_{1}B_{1}C_{1}$中,$CA = CB = 1,\angle BCA = 90^{\circ}$,棱$AA_{1}=2,N$是$A_{1}A$的中点,则$|\overrightarrow{BN}|=$______,$\cos\langle\overrightarrow{BA_{1}},\overrightarrow{CB_{1}}\rangle=$______.
答案:
例2
(1)2 $c - a=(0,0,1 - x)$,$(c - a)\cdot(2b)=(0,0,1 - x)\cdot2(1,2,1)=2(1 - x)= - 2$,解得x = 2.
(2)$\sqrt{3}$ $\frac{\sqrt{30}}{10}$ 如图,以C为原点,$\overrightarrow{CA}$,$\overrightarrow{CB}$,$\overrightarrow{CC_{1}}$的方向分别为x,y,z轴正方向建立空间直角坐标系Cxyz.依题意得B(0,1,0),N(1,0,1).
                
$\therefore|\overrightarrow{BN}|=\sqrt{(1 - 0)^{2}+(0 - 1)^{2}+(1 - 0)^{2}}=\sqrt{3}$.
依题意得A₁(1,0,2),C(0,0,0),B₁(0,1,2).
$\therefore\overrightarrow{BA_{1}}=(1,-1,2)$,$\overrightarrow{CB_{1}}=(0,1,2)$,
$\therefore\overrightarrow{BA_{1}}\cdot\overrightarrow{CB_{1}}=3$,$|\overrightarrow{BA_{1}}|=\sqrt{6}$,$|\overrightarrow{CB_{1}}|=\sqrt{5}$.
$\therefore\cos\langle\overrightarrow{BA_{1}},\overrightarrow{CB_{1}}\rangle=\frac{\overrightarrow{BA_{1}}\cdot\overrightarrow{CB_{1}}}{|\overrightarrow{BA_{1}}||\overrightarrow{CB_{1}}|}=\frac{\sqrt{30}}{10}$.
训练2 (1)[多选]已知空间向量$\boldsymbol{a}=(2,-2,1),\boldsymbol{b}=(3,0,4)$,则下列说法正确的是 (   )
A.向量$\boldsymbol{c}=(-8,5,6)$与$\boldsymbol{a},\boldsymbol{b}$垂直
B.向量$\boldsymbol{d}=(1,-4,-2)$与$\boldsymbol{a},\boldsymbol{b}$共面
C.若$\boldsymbol{a}$与$\boldsymbol{b}$分别是异面直线$l_{1}$与$l_{2}$的方向向量,则$l_{1}$与$l_{2}$所成的角的余弦值为$\frac{2}{3}$
D.向量$\boldsymbol{a}$在向量$\boldsymbol{b}$上的投影向量为$(6,0,8)$
(2)已知$\boldsymbol{e}_{1},\boldsymbol{e}_{2}$是空间单位向量,$\boldsymbol{e}_{1}\cdot\boldsymbol{e}_{2}=\frac{1}{2}$.若空间向量$\boldsymbol{b}$满足$\boldsymbol{b}\cdot\boldsymbol{e}_{1}=2,\boldsymbol{b}\cdot\boldsymbol{e}_{2}=\frac{5}{2}$,且对于任意$x,y\in\mathbf{R},|\boldsymbol{b}-(x\boldsymbol{e}_{1}+y\boldsymbol{e}_{2})|\geqslant|\boldsymbol{b}-(x_{0}\boldsymbol{e}_{1}+y_{0}\boldsymbol{e}_{2})| = 1(x_{0},y_{0}\in\mathbf{R})$,则$x_{0}=$______,$y_{0}=$______,$|\boldsymbol{b}|=$______.
答案: 训练2
(1)BC 对于A选项,$a\cdot c=-16 - 10 + 6\neq0$,$b\cdot c=-24 + 24 = 0$,故c与a不垂直,A错;
对于B选项,设$d = ma+nb$,则$m(2,-2,1)+n(3,0,4)=(1,-4,-2)$,
所以$\begin{cases}2m + 3n = 1\\-2m=-4\\m + 4n=-2\end{cases}$,解得$\begin{cases}m = 2\\n=-1\end{cases}$,即$2a - b = d$,B对;
对于C选项,因为$\cos\langle a,b\rangle=\frac{a\cdot b}{|a|\cdot|b|}=\frac{10}{3\times5}=\frac{2}{3}$,
所以异面直线$l_{1}$与$l_{2}$所成的角的余弦值为$\frac{2}{3}$,C对;
对于D选项,向量a在向量b上的投影向量$|a|\cos\langle a,b\rangle\cdot\frac{b}{|b|}=3\times\frac{2}{3}\times\frac{1}{5}(3,0,4)=(\frac{6}{5},0,\frac{8}{5})$,D错.
故选BC.
(2)1 2 $2\sqrt{2}$ 由题意可令$b = x_{0}e_{1}+y_{0}e_{2}+e_{3}$,其中$|e_{3}| = 1$,$e_{3}\perp e_{i}$,$i = 1,2$.
由$b\cdot e_{1}=2$得$x_{0}+\frac{y_{0}}{2}=2$,由$b\cdot e_{2}=\frac{5}{2}$得$\frac{x_{0}}{2}+y_{0}=\frac{5}{2}$,由$\begin{cases}x_{0}+\frac{y_{0}}{2}=2\\\frac{x_{0}}{2}+y_{0}=\frac{5}{2}\end{cases}$,解得$\begin{cases}x_{0}=1\\y_{0}=2\end{cases}$;
则$b = e_{1}+2e_{2}+e_{3}$,$\therefore|b|=\sqrt{(e_{1}+2e_{2}+e_{3})^{2}}=2\sqrt{2}$.

查看更多完整答案,请扫码查看

关闭