2025年高考帮数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高考帮数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第67页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
训练1 已知函数$f(x)=(x - 2)e^{x}+a(x - 1)^{2}$有两个零点,$a>0$,设$x_{1},x_{2}$是$f(x)$的两个零点,证明:$x_{1}+x_{2}<2$.
答案:
因为$f'(x)=(x - 1)(e^{x}+2a)$,且$a\gt0$,所以当$x\lt1$时,$f'(x)\lt0$,当$x\gt1$时,$f'(x)\gt0$,所以$f(x)$的极小值点为$x = 1$.
$f(x_{1})=f(x_{2})=0$,不妨设$x_{1}\lt1\lt x_{2}$,要证$x_{1}+x_{2}\lt2$,即证$x_{2}\lt2 - x_{1}$.
构造函数$F(x)=f(2 - x)-f(x),x\lt1$,代入整理得$F(x)=-xe^{-x + 2}-(x - 2)e^{x}$.
求导得$F'(x)=(1 - x)(e^{x}-e^{-x + 2})$.
当$x\lt1$时,$F'(x)\lt0$,则$F(x)$在$(-\infty,1)$上单调递减,于是$F(x)\gt f(2 - 1)-f(1)=0$,
则$f(2 - x)-f(x)\gt0$,即$f(2 - x)\gt f(x)(x\lt1)$.
将$x_{1}$代入,则$f(x_{1})\lt f(2 - x_{1})$,
又$f(x_{1})=f(x_{2})$,所以$f(x_{2})\lt f(2 - x_{1})$.
又函数$f(x)$在$(1,+\infty)$上单调递增,且$x_{2},2 - x_{1}\in(1,+\infty)$,所以$x_{2}\lt2 - x_{1}$,即$x_{1}+x_{2}\lt2$得证.
$f(x_{1})=f(x_{2})=0$,不妨设$x_{1}\lt1\lt x_{2}$,要证$x_{1}+x_{2}\lt2$,即证$x_{2}\lt2 - x_{1}$.
构造函数$F(x)=f(2 - x)-f(x),x\lt1$,代入整理得$F(x)=-xe^{-x + 2}-(x - 2)e^{x}$.
求导得$F'(x)=(1 - x)(e^{x}-e^{-x + 2})$.
当$x\lt1$时,$F'(x)\lt0$,则$F(x)$在$(-\infty,1)$上单调递减,于是$F(x)\gt f(2 - 1)-f(1)=0$,
则$f(2 - x)-f(x)\gt0$,即$f(2 - x)\gt f(x)(x\lt1)$.
将$x_{1}$代入,则$f(x_{1})\lt f(2 - x_{1})$,
又$f(x_{1})=f(x_{2})$,所以$f(x_{2})\lt f(2 - x_{1})$.
又函数$f(x)$在$(1,+\infty)$上单调递增,且$x_{2},2 - x_{1}\in(1,+\infty)$,所以$x_{2}\lt2 - x_{1}$,即$x_{1}+x_{2}\lt2$得证.
例2 已知函数$f(x)=2ax-\ln x$,其中$a\in R$.
(1)讨论函数$f(x)$的单调性.
(2)记函数$f(x)$的导函数为$f'(x)$.当$a>0$时,若$x_{1},x_{2}(0<x_{1}<x_{2})$满足$f(x_{1})=f(x_{2})$,证明:$f'(x_{1})+f'(x_{2})<0$.
(1)讨论函数$f(x)$的单调性.
(2)记函数$f(x)$的导函数为$f'(x)$.当$a>0$时,若$x_{1},x_{2}(0<x_{1}<x_{2})$满足$f(x_{1})=f(x_{2})$,证明:$f'(x_{1})+f'(x_{2})<0$.
答案:
函数$f(x)=2ax-\ln x$的定义域为$(0,+\infty)$,
且$f'(x)=2a-\frac{1}{x}=\frac{2ax - 1}{x},x\gt0$.
①当$a\leq0$时,$f'(x)\lt0$在$(0,+\infty)$上恒成立,
所以$f(x)$在$(0,+\infty)$上单调递减.
②当$a\gt0$时,令$f'(x)=0$,可得$x=\frac{1}{2a}$,
当$x\in(0,\frac{1}{2a})$时,$f'(x)\lt0$;当$x\in(\frac{1}{2a},+\infty)$时,$f'(x)\gt0$.
所以$f(x)$在$(0,\frac{1}{2a})$上单调递减,在$(\frac{1}{2a},+\infty)$上单调递增.
综上所述,当$a\leq0$时,$f(x)$在$(0,+\infty)$上单调递减;当$a\gt0$时,$f(x)$在$(0,\frac{1}{2a})$上单调递减,在$(\frac{1}{2a},+\infty)$上单调递增.
(2)由$x_{1},x_{2}(0\lt x_{1}\lt x_{2})$满足$f(x_{1})=f(x_{2})$,可得$2ax_{1}-\ln x_{1}=2ax_{2}-\ln x_{2}$,即$\frac{\ln x_{1}-\ln x_{2}}{x_{1}-x_{2}}=2a$.
因为$f'(x_{1})+f'(x_{2})=2a-\frac{1}{x_{1}}+2a-\frac{1}{x_{2}}=4a-\frac{x_{1}+x_{2}}{x_{1}x_{2}}$,
所以欲证$f'(x_{1})+f'(x_{2})\lt0$,即证$\frac{x_{1}+x_{2}}{x_{1}x_{2}}\gt4a$,
即证$\frac{x_{1}+x_{2}}{x_{1}x_{2}}\gt\frac{2(\ln x_{1}-\ln x_{2})}{x_{1}-x_{2}}$,
即证$2\ln\frac{x_{1}}{x_{2}}\gt\frac{x_{1}^{2}-x_{2}^{2}}{x_{1}x_{2}}=\frac{x_{1}}{x_{2}}-\frac{x_{2}}{x_{1}}$.
设$\frac{x_{1}}{x_{2}}=t(0\lt t\lt1)$,即证$2\ln t+\frac{1}{t}-t\gt0$.
设$h(t)=2\ln t+\frac{1}{t}-t(0\lt t\lt1)$,则$h'(t)=\frac{2}{t}-\frac{1}{t^{2}}-1=\frac{-(t - 1)^{2}}{t^{2}}\lt0$在$(0,1)$上恒成立,
所以$h(t)$在$(0,1)$上单调递减,所以$h(t)\gt0$,
所以$2\ln t+\frac{1}{t}-t\gt0$,即$f'(x_{1})+f'(x_{2})\lt0$.
且$f'(x)=2a-\frac{1}{x}=\frac{2ax - 1}{x},x\gt0$.
①当$a\leq0$时,$f'(x)\lt0$在$(0,+\infty)$上恒成立,
所以$f(x)$在$(0,+\infty)$上单调递减.
②当$a\gt0$时,令$f'(x)=0$,可得$x=\frac{1}{2a}$,
当$x\in(0,\frac{1}{2a})$时,$f'(x)\lt0$;当$x\in(\frac{1}{2a},+\infty)$时,$f'(x)\gt0$.
所以$f(x)$在$(0,\frac{1}{2a})$上单调递减,在$(\frac{1}{2a},+\infty)$上单调递增.
综上所述,当$a\leq0$时,$f(x)$在$(0,+\infty)$上单调递减;当$a\gt0$时,$f(x)$在$(0,\frac{1}{2a})$上单调递减,在$(\frac{1}{2a},+\infty)$上单调递增.
(2)由$x_{1},x_{2}(0\lt x_{1}\lt x_{2})$满足$f(x_{1})=f(x_{2})$,可得$2ax_{1}-\ln x_{1}=2ax_{2}-\ln x_{2}$,即$\frac{\ln x_{1}-\ln x_{2}}{x_{1}-x_{2}}=2a$.
因为$f'(x_{1})+f'(x_{2})=2a-\frac{1}{x_{1}}+2a-\frac{1}{x_{2}}=4a-\frac{x_{1}+x_{2}}{x_{1}x_{2}}$,
所以欲证$f'(x_{1})+f'(x_{2})\lt0$,即证$\frac{x_{1}+x_{2}}{x_{1}x_{2}}\gt4a$,
即证$\frac{x_{1}+x_{2}}{x_{1}x_{2}}\gt\frac{2(\ln x_{1}-\ln x_{2})}{x_{1}-x_{2}}$,
即证$2\ln\frac{x_{1}}{x_{2}}\gt\frac{x_{1}^{2}-x_{2}^{2}}{x_{1}x_{2}}=\frac{x_{1}}{x_{2}}-\frac{x_{2}}{x_{1}}$.
设$\frac{x_{1}}{x_{2}}=t(0\lt t\lt1)$,即证$2\ln t+\frac{1}{t}-t\gt0$.
设$h(t)=2\ln t+\frac{1}{t}-t(0\lt t\lt1)$,则$h'(t)=\frac{2}{t}-\frac{1}{t^{2}}-1=\frac{-(t - 1)^{2}}{t^{2}}\lt0$在$(0,1)$上恒成立,
所以$h(t)$在$(0,1)$上单调递减,所以$h(t)\gt0$,
所以$2\ln t+\frac{1}{t}-t\gt0$,即$f'(x_{1})+f'(x_{2})\lt0$.
训练2 已知函数$f(x)=\frac{\ln x + 1}{ax}$.
(1)讨论$f(x)$的单调性;
(2)若$(ex_{1})^{x_{2}}=(ex_{2})^{x_{1}}$(e是自然对数的底数),且$x_{1}>0,x_{2}>0,x_{1}\neq x_{2}$,证明:$x_{1}^{2}+x_{2}^{2}>2$.
(1)讨论$f(x)$的单调性;
(2)若$(ex_{1})^{x_{2}}=(ex_{2})^{x_{1}}$(e是自然对数的底数),且$x_{1}>0,x_{2}>0,x_{1}\neq x_{2}$,证明:$x_{1}^{2}+x_{2}^{2}>2$.
答案:
由$f(x)=\frac{\ln x + 1}{ax}$得$f'(x)=\frac{-\ln x}{ax^{2}}$,
令$f'(x)=0$,得$x = 1$.
当$a\gt0$时,若$x\in(0,1)$,则$f'(x)\gt0$;
若$x\in(1,+\infty)$,则$f'(x)\lt0$.
所以$f(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减.
当$a\lt0$时,若$x\in(0,1)$,则$f'(x)\lt0$;
若$x\in(1,+\infty)$,则$f'(x)\gt0$.
所以$f(x)$在$(0,1)$上单调递减,在$(1,+\infty)$上单调递增.
综上,当$a\gt0$时,$f(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减;当$a\lt0$时,$f(x)$在$(0,1)$上单调递减,在$(1,+\infty)$上单调递增.
(2)由$(ex_{1})^{x_{2}}=(ex_{2})^{x_{1}}$,两边取对数,得$x_{2}\ln(ex_{1})=x_{1}\ln(ex_{2})$,
即$x_{2}(\ln x_{1}+1)=x_{1}(\ln x_{2}+1)$,所以$\frac{\ln x_{1}+1}{x_{1}}=\frac{\ln x_{2}+1}{x_{2}}$,
即当$a = 1$时,存在$x_{1}\gt0,x_{2}\gt0,x_{1}\neq x_{2}$,满足$f(x_{1})=f(x_{2})$.
由
(1)可知,当$a = 1$时,$f(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减,
所以$f(x)\leq f(1)=1$.
当$x\in(1,+\infty)$时,$f(x)=\frac{\ln x + 1}{x}\gt0$,
由于$f(\frac{1}{e})=0$,故$f(x)$在$(\frac{1}{e},1)$上恒有$f(x)\gt0$.
不妨令$x_{1}\lt x_{2}$,记$f(x_{1})=f(x_{2})=m$,则$m\in(0,1)$,且$\ln x_{1}+1=mx_{1}$ ①,$\ln x_{2}+1=mx_{2}$ ②,
①+②得$\ln(x_{1}x_{2})=m(x_{1}+x_{2})-2$ ③,
①-②得$\ln\frac{x_{1}}{x_{2}}=m(x_{1}-x_{2})$,则$m=\frac{1}{x_{1}-x_{2}}\ln\frac{x_{1}}{x_{2}}$,代入③得$\ln(x_{1}x_{2})=\frac{(x_{1}+x_{2})}{x_{1}-x_{2}}\ln\frac{x_{1}}{x_{2}}-2$.
记$t=\frac{x_{1}}{x_{2}},0\lt t\lt1$,则$\ln(x_{1}x_{2})=\frac{t + 1}{t - 1}\ln t-2=\frac{(t + 1)\ln t-2(t - 1)}{t - 1}$.
设$g(t)=(t + 1)\ln t-2(t - 1)(0\lt t\lt1)$,则$g'(t)=\ln t+\frac{1}{t}-1$.
设$h(t)=\ln t+\frac{1}{t}-1(0\lt t\lt1)$,则$h'(t)=\frac{1}{t}-\frac{1}{t^{2}}=\frac{t - 1}{t^{2}}\lt0$,所以$h(t)$在$(0,1)$上单调递减.又因为$h(1)=0$,所以当$t\in(0,1)$时,$h(t)=g'(t)\gt0$,即$g(t)$在$(0,1)$上单调递增,
又$g(1)=0$,所以当$t\in(0,1)$时,$g(t)\lt0$,
所以当$t\in(0,1)$时,$\ln(x_{1}x_{2})=\frac{(t + 1)\ln t-2(t - 1)}{t - 1}\gt0$,
所以$x_{1}x_{2}\gt1$,所以$x_{1}^{2}+x_{2}^{2}\gt2x_{1}x_{2}\gt2$.
令$f'(x)=0$,得$x = 1$.
当$a\gt0$时,若$x\in(0,1)$,则$f'(x)\gt0$;
若$x\in(1,+\infty)$,则$f'(x)\lt0$.
所以$f(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减.
当$a\lt0$时,若$x\in(0,1)$,则$f'(x)\lt0$;
若$x\in(1,+\infty)$,则$f'(x)\gt0$.
所以$f(x)$在$(0,1)$上单调递减,在$(1,+\infty)$上单调递增.
综上,当$a\gt0$时,$f(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减;当$a\lt0$时,$f(x)$在$(0,1)$上单调递减,在$(1,+\infty)$上单调递增.
(2)由$(ex_{1})^{x_{2}}=(ex_{2})^{x_{1}}$,两边取对数,得$x_{2}\ln(ex_{1})=x_{1}\ln(ex_{2})$,
即$x_{2}(\ln x_{1}+1)=x_{1}(\ln x_{2}+1)$,所以$\frac{\ln x_{1}+1}{x_{1}}=\frac{\ln x_{2}+1}{x_{2}}$,
即当$a = 1$时,存在$x_{1}\gt0,x_{2}\gt0,x_{1}\neq x_{2}$,满足$f(x_{1})=f(x_{2})$.
由
(1)可知,当$a = 1$时,$f(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减,
所以$f(x)\leq f(1)=1$.
当$x\in(1,+\infty)$时,$f(x)=\frac{\ln x + 1}{x}\gt0$,
由于$f(\frac{1}{e})=0$,故$f(x)$在$(\frac{1}{e},1)$上恒有$f(x)\gt0$.
不妨令$x_{1}\lt x_{2}$,记$f(x_{1})=f(x_{2})=m$,则$m\in(0,1)$,且$\ln x_{1}+1=mx_{1}$ ①,$\ln x_{2}+1=mx_{2}$ ②,
①+②得$\ln(x_{1}x_{2})=m(x_{1}+x_{2})-2$ ③,
①-②得$\ln\frac{x_{1}}{x_{2}}=m(x_{1}-x_{2})$,则$m=\frac{1}{x_{1}-x_{2}}\ln\frac{x_{1}}{x_{2}}$,代入③得$\ln(x_{1}x_{2})=\frac{(x_{1}+x_{2})}{x_{1}-x_{2}}\ln\frac{x_{1}}{x_{2}}-2$.
记$t=\frac{x_{1}}{x_{2}},0\lt t\lt1$,则$\ln(x_{1}x_{2})=\frac{t + 1}{t - 1}\ln t-2=\frac{(t + 1)\ln t-2(t - 1)}{t - 1}$.
设$g(t)=(t + 1)\ln t-2(t - 1)(0\lt t\lt1)$,则$g'(t)=\ln t+\frac{1}{t}-1$.
设$h(t)=\ln t+\frac{1}{t}-1(0\lt t\lt1)$,则$h'(t)=\frac{1}{t}-\frac{1}{t^{2}}=\frac{t - 1}{t^{2}}\lt0$,所以$h(t)$在$(0,1)$上单调递减.又因为$h(1)=0$,所以当$t\in(0,1)$时,$h(t)=g'(t)\gt0$,即$g(t)$在$(0,1)$上单调递增,
又$g(1)=0$,所以当$t\in(0,1)$时,$g(t)\lt0$,
所以当$t\in(0,1)$时,$\ln(x_{1}x_{2})=\frac{(t + 1)\ln t-2(t - 1)}{t - 1}\gt0$,
所以$x_{1}x_{2}\gt1$,所以$x_{1}^{2}+x_{2}^{2}\gt2x_{1}x_{2}\gt2$.
查看更多完整答案,请扫码查看