2025年成才之路高中新课程学习指导高中数学必修第二册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第105页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
对点训练3
已知$\cos \alpha=\frac{1}{7}, \cos (\alpha+\beta)=-\frac{11}{14}$, 且$\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, 求$\beta$的值.
已知$\cos \alpha=\frac{1}{7}, \cos (\alpha+\beta)=-\frac{11}{14}$, 且$\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, 求$\beta$的值.
答案:
对点训练3:$\alpha, \beta \in (0, \frac{\pi}{2})$,$\therefore 0 < \alpha + \beta < \pi$,
$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - (-\frac{11}{14})^2} = \frac{5\sqrt{3}}{14}$,$\sin(\alpha + \beta) = \sqrt{1 - (-\frac{11}{14})^2} = \frac{5\sqrt{3}}{14}$,
$\therefore \cos \beta = \cos[(\alpha + \beta) - \alpha] = \cos(\alpha + \beta)\cos \alpha + \sin(\alpha + \beta)\sin \alpha$
=$\frac{11}{14} × \frac{1}{7} + \frac{5\sqrt{3}}{14} × \frac{4\sqrt{3}}{7} - \frac{1}{2}$,
$\therefore \beta = \frac{\pi}{3}$.
$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - (-\frac{11}{14})^2} = \frac{5\sqrt{3}}{14}$,$\sin(\alpha + \beta) = \sqrt{1 - (-\frac{11}{14})^2} = \frac{5\sqrt{3}}{14}$,
$\therefore \cos \beta = \cos[(\alpha + \beta) - \alpha] = \cos(\alpha + \beta)\cos \alpha + \sin(\alpha + \beta)\sin \alpha$
=$\frac{11}{14} × \frac{1}{7} + \frac{5\sqrt{3}}{14} × \frac{4\sqrt{3}}{7} - \frac{1}{2}$,
$\therefore \beta = \frac{\pi}{3}$.
1. 计算$\sin 43^{\circ} \cos 13^{\circ}-\cos 43^{\circ} \sin 13^{\circ}$的结果等于(
A.$\frac{1}{2}$
B.$\frac{\sqrt{3}}{3}$
C.$\frac{\sqrt{2}}{2}$
D.$\frac{\sqrt{3}}{2}$
A
)A.$\frac{1}{2}$
B.$\frac{\sqrt{3}}{3}$
C.$\frac{\sqrt{2}}{2}$
D.$\frac{\sqrt{3}}{2}$
答案:
1 A $\because \sin 43° \cos 13° - \cos 43° \sin 13° = \sin(43° - 13°) =$
$\sin 30° = \frac{1}{2}$.故选A.
$\sin 30° = \frac{1}{2}$.故选A.
2. 已知$\cos \alpha=\frac{12}{13}, \alpha \in\left(\frac{3 \pi}{2}, 2 \pi\right)$, 则$\cos \left(\alpha-\frac{\pi}{4}\right)=$(
A.$\frac{5 \sqrt{2}}{13}$
B.$\frac{7 \sqrt{2}}{13}$
C.$\frac{17 \sqrt{2}}{26}$
D.$\frac{7 \sqrt{2}}{26}$
D
)A.$\frac{5 \sqrt{2}}{13}$
B.$\frac{7 \sqrt{2}}{13}$
C.$\frac{17 \sqrt{2}}{26}$
D.$\frac{7 \sqrt{2}}{26}$
答案:
2 D 因为 $\cos \alpha = \frac{12}{13}$,$\alpha \in (\frac{3\pi}{2}, 2\pi)$,可得 $\sin \alpha = -\sqrt{1 - \cos^2 \alpha}$
=$-\frac{5}{13}$,则 $\cos(\alpha - \frac{\pi}{4}) = \frac{\sqrt{2}}{2} \cos \alpha + \frac{\sqrt{2}}{2} \sin \alpha = \frac{\sqrt{2}}{2} × \frac{12}{13} + \frac{\sqrt{2}}{2} ×$
($-\frac{5}{13}) = \frac{7\sqrt{2}}{26}$.故选D.
=$-\frac{5}{13}$,则 $\cos(\alpha - \frac{\pi}{4}) = \frac{\sqrt{2}}{2} \cos \alpha + \frac{\sqrt{2}}{2} \sin \alpha = \frac{\sqrt{2}}{2} × \frac{12}{13} + \frac{\sqrt{2}}{2} ×$
($-\frac{5}{13}) = \frac{7\sqrt{2}}{26}$.故选D.
3. 若$\tan \alpha=2, \tan \beta=\frac{1}{3}$, 则$\tan (\alpha+\beta)$等于(
A.$1$
B.$-1$
C.$7$
D.$-7$
C
)A.$1$
B.$-1$
C.$7$
D.$-7$
答案:
3 C $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha · \tan \beta} = \frac{2 + \frac{1}{3}}{1 - 2 × \frac{1}{3}} = 7$,故
选C.
选C.
4. 已知$0<\beta<\alpha<\frac{\pi}{2}$, 且$\cos (\alpha-\beta)=\frac{12}{13}, \cos 2 \beta=\frac{3}{5}$, 则$\sin (\alpha+\beta)=$(
A.$\frac{63}{65}$
B.$\frac{33}{65}$
C.$\frac{48}{65}$
D.$\frac{16}{65}$
A
)A.$\frac{63}{65}$
B.$\frac{33}{65}$
C.$\frac{48}{65}$
D.$\frac{16}{65}$
答案:
4 A 因为$0 < \beta < \alpha < \frac{\pi}{2}$ 所以$0 < \alpha - \beta < \frac{\pi}{2}$,又 $\cos(\alpha - \beta) =$
$\frac{12}{13}$,所以 $\sin(\alpha - \beta) = \sqrt{1 - \cos^2(\alpha - \beta)} = \sqrt{1 - (\frac{12}{13})^2} = \frac{5}{13}$,
因为$0 < \beta < \frac{\pi}{2}$,所以$0 < 2\beta < \pi$,因为 $\cos 2\beta = \frac{3}{5}$,所以 $\sin 2\beta$
=$\sqrt{1 - \cos^2 2\beta} = \sqrt{1 - (\frac{3}{5})^2} = \frac{4}{5}$,所以 $\sin(\alpha + \beta) = \sin[(\alpha$
$- \beta) + 2\beta] = \sin(\alpha - \beta)\cos 2\beta + \cos(\alpha - \beta)\sin 2\beta = \frac{5}{13} × \frac{3}{5} +$
$\frac{12}{13} × \frac{4}{5} = \frac{63}{65}$.故选A.
$\frac{12}{13}$,所以 $\sin(\alpha - \beta) = \sqrt{1 - \cos^2(\alpha - \beta)} = \sqrt{1 - (\frac{12}{13})^2} = \frac{5}{13}$,
因为$0 < \beta < \frac{\pi}{2}$,所以$0 < 2\beta < \pi$,因为 $\cos 2\beta = \frac{3}{5}$,所以 $\sin 2\beta$
=$\sqrt{1 - \cos^2 2\beta} = \sqrt{1 - (\frac{3}{5})^2} = \frac{4}{5}$,所以 $\sin(\alpha + \beta) = \sin[(\alpha$
$- \beta) + 2\beta] = \sin(\alpha - \beta)\cos 2\beta + \cos(\alpha - \beta)\sin 2\beta = \frac{5}{13} × \frac{3}{5} +$
$\frac{12}{13} × \frac{4}{5} = \frac{63}{65}$.故选A.
5. 如图, 在平面直角坐标系$x O y$中, 以$O x$轴为始边作两个锐角$\alpha 、 \beta$, 它们的终边分别与单位圆交于$A 、 B$两点. 已知$A 、 B$的横坐标分别为$\frac{\sqrt{2}}{10} 、 \frac{2 \sqrt{5}}{5}$.
(1) 求$\tan (\alpha+\beta)$的值;
(2) 求$\alpha+2 \beta$的值.

(1) 求$\tan (\alpha+\beta)$的值;
(2) 求$\alpha+2 \beta$的值.
答案:
5
(1)由三角函数的定义可知 $\cos \alpha = \frac{\sqrt{2}}{10}$,$\cos \beta = \frac{2\sqrt{5}}{5}$;所以 $\sin \alpha$
=$\frac{7\sqrt{2}}{10}$,$\sin \beta = \frac{\sqrt{5}}{5}$,
所以 $\tan \alpha = 7$,$\tan \beta = \frac{1}{2}$,
于是 $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = -3$.
(2)$\tan(\alpha + 2\beta) = \tan[(\alpha + \beta) + \beta]$
=$\frac{\tan(\alpha + \beta) + \tan \beta}{1 - \tan(\alpha + \beta)\tan \beta} = \frac{-3 + \frac{1}{2}}{1 - (-3) × \frac{1}{2}} = -1$.
又$0 < \alpha < \frac{\pi}{2}$,所以$0 < \alpha + 2\beta < \frac{3\pi}{2}$,所以 $\alpha + 2\beta = \frac{3\pi}{4}\pi$.
(1)由三角函数的定义可知 $\cos \alpha = \frac{\sqrt{2}}{10}$,$\cos \beta = \frac{2\sqrt{5}}{5}$;所以 $\sin \alpha$
=$\frac{7\sqrt{2}}{10}$,$\sin \beta = \frac{\sqrt{5}}{5}$,
所以 $\tan \alpha = 7$,$\tan \beta = \frac{1}{2}$,
于是 $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = -3$.
(2)$\tan(\alpha + 2\beta) = \tan[(\alpha + \beta) + \beta]$
=$\frac{\tan(\alpha + \beta) + \tan \beta}{1 - \tan(\alpha + \beta)\tan \beta} = \frac{-3 + \frac{1}{2}}{1 - (-3) × \frac{1}{2}} = -1$.
又$0 < \alpha < \frac{\pi}{2}$,所以$0 < \alpha + 2\beta < \frac{3\pi}{2}$,所以 $\alpha + 2\beta = \frac{3\pi}{4}\pi$.
查看更多完整答案,请扫码查看