2025年成才之路高中新课程学习指导高中数学必修第二册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第19页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
例3. (1)已知$\cos(\pi + \alpha) = -\frac{1}{2}$,则$\cos(\pi - \alpha)= $
(2)已知$\sin(\frac{\pi}{6} - \alpha) = \frac{2\sqrt{2}}{3}, \cos(\frac{\pi}{6} - \alpha) = \frac{1}{3}$,求$\cos(\frac{5\pi}{6} + \alpha) · \sin(\frac{19\pi}{6} - \alpha) = $
$-\frac{1}{2}$
$$.(2)已知$\sin(\frac{\pi}{6} - \alpha) = \frac{2\sqrt{2}}{3}, \cos(\frac{\pi}{6} - \alpha) = \frac{1}{3}$,求$\cos(\frac{5\pi}{6} + \alpha) · \sin(\frac{19\pi}{6} - \alpha) = $
$\frac{2\sqrt{2}}{9}$
$$.
答案:
例3:
(1)$-\frac{1}{2}$
(2)$\frac{2\sqrt{2}}{9}$
(1)方法一:因为$\cos(\pi + \alpha)=-\cos\alpha = -\frac{1}{2}$,所以$\cos\alpha = \frac{1}{2}$,则$\cos(\pi - \alpha)=-\cos\alpha = -\frac{1}{2}$.
方法二:记$\pi + \alpha = x$,$\pi - \alpha = y$,问题变为已知$\cos x$求$\cos y$.
显然$x + y = 2\pi$(目的是消去$\alpha$),
所以$\cos y=\cos(2\pi - x)=\cos(-x)=\cos x = -\frac{1}{2}$.
(2)$\cos(\frac{5\pi}{6} + \alpha)·\sin(\frac{19}{6}\pi - \alpha)=\cos[\pi - (\frac{\pi}{6} - \alpha)]·\sin(3\pi + \frac{\pi}{6} - \alpha)=-\cos(\frac{\pi}{6} - \alpha)·\sin[\pi + (\frac{\pi}{6} - \alpha)]=-\cos(\frac{\pi}{6} - \alpha)·[-\sin(\frac{\pi}{6} - \alpha)]=\cos(\frac{\pi}{6} - \alpha)·\sin(\frac{\pi}{6} - \alpha)=-\frac{1}{2}[-\frac{2\sqrt{2}}{3} × \frac{1}{3}]= \frac{2\sqrt{2}}{9}$.
(1)$-\frac{1}{2}$
(2)$\frac{2\sqrt{2}}{9}$
(1)方法一:因为$\cos(\pi + \alpha)=-\cos\alpha = -\frac{1}{2}$,所以$\cos\alpha = \frac{1}{2}$,则$\cos(\pi - \alpha)=-\cos\alpha = -\frac{1}{2}$.
方法二:记$\pi + \alpha = x$,$\pi - \alpha = y$,问题变为已知$\cos x$求$\cos y$.
显然$x + y = 2\pi$(目的是消去$\alpha$),
所以$\cos y=\cos(2\pi - x)=\cos(-x)=\cos x = -\frac{1}{2}$.
(2)$\cos(\frac{5\pi}{6} + \alpha)·\sin(\frac{19}{6}\pi - \alpha)=\cos[\pi - (\frac{\pi}{6} - \alpha)]·\sin(3\pi + \frac{\pi}{6} - \alpha)=-\cos(\frac{\pi}{6} - \alpha)·\sin[\pi + (\frac{\pi}{6} - \alpha)]=-\cos(\frac{\pi}{6} - \alpha)·[-\sin(\frac{\pi}{6} - \alpha)]=\cos(\frac{\pi}{6} - \alpha)·\sin(\frac{\pi}{6} - \alpha)=-\frac{1}{2}[-\frac{2\sqrt{2}}{3} × \frac{1}{3}]= \frac{2\sqrt{2}}{9}$.
对点训练3
(1)已知$\cos(53° - \alpha) = \frac{1}{5}$,则$\cos(127° + \alpha) =$ (
A. $\pm \frac{1}{5}$
B. $\frac{2\sqrt{6}}{5}$
C. $\frac{1}{5}$
D. $-\frac{1}{5}$
(2)已知$\cos(\frac{\pi}{6} - \alpha) = \frac{\sqrt{3}}{3}$,求$\cos(\frac{7\pi}{6} - \alpha) - \sin^2(\alpha - \frac{13\pi}{6})$的值(注: $\sin^2(\frac{\pi}{6} - \alpha) + \cos^2(\frac{\pi}{6} - \alpha) = 1, \alpha$为任意角).
(1)已知$\cos(53° - \alpha) = \frac{1}{5}$,则$\cos(127° + \alpha) =$ (
D
)A. $\pm \frac{1}{5}$
B. $\frac{2\sqrt{6}}{5}$
C. $\frac{1}{5}$
D. $-\frac{1}{5}$
(2)已知$\cos(\frac{\pi}{6} - \alpha) = \frac{\sqrt{3}}{3}$,求$\cos(\frac{7\pi}{6} - \alpha) - \sin^2(\alpha - \frac{13\pi}{6})$的值(注: $\sin^2(\frac{\pi}{6} - \alpha) + \cos^2(\frac{\pi}{6} - \alpha) = 1, \alpha$为任意角).
答案:
对点训练3:
(1)D
(2)见解析
【解析】
(1)因为$\cos(53° - \alpha)=\frac{1}{5}$,所以$\cos(127° + \alpha)=\cos[180° - (53° - \alpha)]=-\cos(53° - \alpha)=-\frac{1}{5}$. 故选D.
(2)$\cos(\frac{7\pi}{6} - \alpha) - \sin^2(\alpha - \frac{13\pi}{6})=\cos[\pi + (\frac{\pi}{6} - \alpha)] - \sin^2[(\alpha - \frac{\pi}{6}) - 2\pi]$
$=-\cos(\frac{\pi}{6} - \alpha) - \sin^2(\frac{\pi}{6} - \alpha)=-\frac{\sqrt{3}}{3} - \frac{2}{3}=-\frac{\sqrt{3} + 2}{3}$.
(1)D
(2)见解析
【解析】
(1)因为$\cos(53° - \alpha)=\frac{1}{5}$,所以$\cos(127° + \alpha)=\cos[180° - (53° - \alpha)]=-\cos(53° - \alpha)=-\frac{1}{5}$. 故选D.
(2)$\cos(\frac{7\pi}{6} - \alpha) - \sin^2(\alpha - \frac{13\pi}{6})=\cos[\pi + (\frac{\pi}{6} - \alpha)] - \sin^2[(\alpha - \frac{\pi}{6}) - 2\pi]$
$=-\cos(\frac{\pi}{6} - \alpha) - \sin^2(\frac{\pi}{6} - \alpha)=-\frac{\sqrt{3}}{3} - \frac{2}{3}=-\frac{\sqrt{3} + 2}{3}$.
1. $\sin \ 1215° =$ (
A.$\frac{\sqrt{2}}{2}$
B.$\frac{1}{2}$
C.$-\frac{1}{2}$
D.$-\frac{\sqrt{2}}{2}$
A
)A.$\frac{\sqrt{2}}{2}$
B.$\frac{1}{2}$
C.$-\frac{1}{2}$
D.$-\frac{\sqrt{2}}{2}$
答案:
1 A $\sin 1215°=\sin(3 × 360° + 135°)=\sin 135°=\sin(180° - 45°)=\sin 45°=\frac{\sqrt{2}}{2}$
2. 若$\cos \ \alpha = m$,则$\cos(-\alpha) =$ (
A.$m$
B.$-m$
C.$|m|$
D.$m^2$
A
)A.$m$
B.$-m$
C.$|m|$
D.$m^2$
答案:
2 A $\cos(-\alpha)=\cos\alpha = m$.
3. 在平面直角坐标系$xOy$中,角$\alpha$与角$\beta$均以$Ox$为始边,它们的终边关于$y$轴对称. 若$\sin \ \alpha = \frac{1}{3}$,则$\sin \ \beta = $
$\frac{1}{3}$
$$.
答案:
3 $\frac{1}{3}$ 由题意可知$\alpha + \beta = \pi + 2k\pi$,$k \in \mathbf{Z}$.
$\because \sin\alpha = \frac{1}{3}$,
$\therefore \sin\beta = \sin(\pi + 2k\pi - \alpha)=\sin\alpha = \frac{1}{3}$
$\because \sin\alpha = \frac{1}{3}$,
$\therefore \sin\beta = \sin(\pi + 2k\pi - \alpha)=\sin\alpha = \frac{1}{3}$
4. 化简: $\frac{\cos(180° + \alpha)\sin(\alpha + 360°)}{\sin(-\alpha - 180°)\cos(-180° - \alpha)}$.
答案:
4 原式$=\frac{(-\cos\alpha)\sin\alpha}{-\sin(\alpha + 180°)\cos(180° + \alpha)}$
$=\frac{\sin\alpha\cos\alpha}{\sin(\alpha + 180°)\cos(180° + \alpha)}$
$=\frac{\sin\alpha\cos\alpha}{(-\sin\alpha)(-\cos\alpha)} = 1$.
$=\frac{\sin\alpha\cos\alpha}{\sin(\alpha + 180°)\cos(180° + \alpha)}$
$=\frac{\sin\alpha\cos\alpha}{(-\sin\alpha)(-\cos\alpha)} = 1$.
查看更多完整答案,请扫码查看