2025年成才之路高中新课程学习指导高中数学必修第二册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第58页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
对点训练1
(1)下列各式计算正确的有 (
①$( - 7)6\boldsymbol{a} = - 42\boldsymbol{a}$;②$7(\boldsymbol{a} + \boldsymbol{b}) - 8\boldsymbol{b} = 7\boldsymbol{a} + 15\boldsymbol{b}$;
③$\boldsymbol{a} - 2\boldsymbol{b} + \boldsymbol{a} + 2\boldsymbol{b} = 2\boldsymbol{a}$;④$4(2\boldsymbol{a} + \boldsymbol{b}) = 8\boldsymbol{a} + 4\boldsymbol{b}$.
A.1个 B.2个 C.3个 D.4个
(2)若$\boldsymbol{a} = \boldsymbol{b} + \boldsymbol{c}$,化简$3(\boldsymbol{a} + 2\boldsymbol{b}) - 2(3\boldsymbol{b} + \boldsymbol{c}) - 2(\boldsymbol{a} + \boldsymbol{b})$的结果为 (
A. $- \boldsymbol{a}$ B. $- 4\boldsymbol{b}$ C. $\boldsymbol{c}$ D. $\boldsymbol{a} - \boldsymbol{b}$
(1)下列各式计算正确的有 (
C
)①$( - 7)6\boldsymbol{a} = - 42\boldsymbol{a}$;②$7(\boldsymbol{a} + \boldsymbol{b}) - 8\boldsymbol{b} = 7\boldsymbol{a} + 15\boldsymbol{b}$;
③$\boldsymbol{a} - 2\boldsymbol{b} + \boldsymbol{a} + 2\boldsymbol{b} = 2\boldsymbol{a}$;④$4(2\boldsymbol{a} + \boldsymbol{b}) = 8\boldsymbol{a} + 4\boldsymbol{b}$.
A.1个 B.2个 C.3个 D.4个
(2)若$\boldsymbol{a} = \boldsymbol{b} + \boldsymbol{c}$,化简$3(\boldsymbol{a} + 2\boldsymbol{b}) - 2(3\boldsymbol{b} + \boldsymbol{c}) - 2(\boldsymbol{a} + \boldsymbol{b})$的结果为 (
A
)A. $- \boldsymbol{a}$ B. $- 4\boldsymbol{b}$ C. $\boldsymbol{c}$ D. $\boldsymbol{a} - \boldsymbol{b}$
答案:
对点训练1:
(1)C
(2)A
(1)①③④正确,②错$,7(\boldsymbol{a} + \boldsymbol{b})$
$ -8\boldsymbol{b} = 7\boldsymbol{a} + 7\boldsymbol{b} - 8\boldsymbol{b} = 7\boldsymbol{a} - \boldsymbol{b}.$
$(2)3(\boldsymbol{a} + 2\boldsymbol{b}) - 2(3\boldsymbol{b} + \boldsymbol{c}) - 2(\boldsymbol{a} + \boldsymbol{b}) = (3 - 2)\boldsymbol{a} + (6 - 6 -$
$2)\boldsymbol{b} - 2\boldsymbol{c} = \boldsymbol{a} - 2(\boldsymbol{b} + \boldsymbol{c}) = \boldsymbol{a} - 2\boldsymbol{a} = -\boldsymbol{a}.$
(1)C
(2)A
(1)①③④正确,②错$,7(\boldsymbol{a} + \boldsymbol{b})$
$ -8\boldsymbol{b} = 7\boldsymbol{a} + 7\boldsymbol{b} - 8\boldsymbol{b} = 7\boldsymbol{a} - \boldsymbol{b}.$
$(2)3(\boldsymbol{a} + 2\boldsymbol{b}) - 2(3\boldsymbol{b} + \boldsymbol{c}) - 2(\boldsymbol{a} + \boldsymbol{b}) = (3 - 2)\boldsymbol{a} + (6 - 6 -$
$2)\boldsymbol{b} - 2\boldsymbol{c} = \boldsymbol{a} - 2(\boldsymbol{b} + \boldsymbol{c}) = \boldsymbol{a} - 2\boldsymbol{a} = -\boldsymbol{a}.$
例2. 如图所示,四边形$OADB$是以向量$\overrightarrow{OA} = \boldsymbol{a}$,$\overrightarrow{OB} = \boldsymbol{b}$为邻边的平行四边形,又$\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BC}$,$\overrightarrow{CN} = \frac{1}{3}\overrightarrow{CD}$,试用$\boldsymbol{a}$,$\boldsymbol{b}$表示$\overrightarrow{OM}$,$\overrightarrow{ON}$,$\overrightarrow{MN}$.
【分析】 用$\boldsymbol{a}$,$\boldsymbol{b}$表示$\overrightarrow{BM}\to$表示$\overrightarrow{OM}$,$\overrightarrow{ON}\to\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM}$
▶[归纳提升]
【分析】 用$\boldsymbol{a}$,$\boldsymbol{b}$表示$\overrightarrow{BM}\to$表示$\overrightarrow{OM}$,$\overrightarrow{ON}\to\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM}$
▶[归纳提升]
答案:
例$2:\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BC} = \frac{1}{6}\overrightarrow{BA} = \frac{1}{6}(\overrightarrow{OA} - \overrightarrow{OB})$
$ = \frac{1}{6}(\boldsymbol{a} - \boldsymbol{b}),$
$\therefore\overrightarrow{OM} = \overrightarrow{OB} + \overrightarrow{BM} = \boldsymbol{b} + \frac{1}{6}\boldsymbol{a} - \frac{1}{6}\boldsymbol{b} = \frac{1}{6}\boldsymbol{a} + \frac{5}{6}\boldsymbol{b}.$
$\because\overrightarrow{CN} = \frac{1}{3}\overrightarrow{CD} = \frac{1}{6}\overrightarrow{OD},$
$\therefore\overrightarrow{ON} = \overrightarrow{OC} + \overrightarrow{CN} = \frac{1}{2}\overrightarrow{OD} + \frac{1}{6}\overrightarrow{OD} = \frac{2}{3}\overrightarrow{OD} = \frac{2}{3}(\overrightarrow{OA} + \overrightarrow{OB}) =$
$\frac{2}{3}\boldsymbol{a} + \frac{2}{3}\boldsymbol{b},$
$ = \frac{1}{6}(\boldsymbol{a} - \boldsymbol{b}),$
$\therefore\overrightarrow{OM} = \overrightarrow{OB} + \overrightarrow{BM} = \boldsymbol{b} + \frac{1}{6}\boldsymbol{a} - \frac{1}{6}\boldsymbol{b} = \frac{1}{6}\boldsymbol{a} + \frac{5}{6}\boldsymbol{b}.$
$\because\overrightarrow{CN} = \frac{1}{3}\overrightarrow{CD} = \frac{1}{6}\overrightarrow{OD},$
$\therefore\overrightarrow{ON} = \overrightarrow{OC} + \overrightarrow{CN} = \frac{1}{2}\overrightarrow{OD} + \frac{1}{6}\overrightarrow{OD} = \frac{2}{3}\overrightarrow{OD} = \frac{2}{3}(\overrightarrow{OA} + \overrightarrow{OB}) =$
$\frac{2}{3}\boldsymbol{a} + \frac{2}{3}\boldsymbol{b},$
对点训练2
(1)如图,在正方形$ABCD$中,$Q$为$BC$上一点,$AQ$交$BD$于$E$,$A$且$E$,$F$为$BD$的两个三等分点,则 (
A. $\overrightarrow{AE} + \overrightarrow{AF} + \overrightarrow{AC} = 0$
B. $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD}$
C. $\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD}$
D. $\overrightarrow{FQ} = \frac{2}{3}\overrightarrow{AB} - \frac{1}{6}\overrightarrow{AD}$
(2)如图所示,已知在$\triangle ABC$中,$\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB}$,$DE// BC$,$DE$交$AC$于点$E$,$BC$边上的中线$AM$交$DE$于点$N$,设$\overrightarrow{AB} = \boldsymbol{a}$,$\overrightarrow{AC} = \boldsymbol{b}$,用$\boldsymbol{a}$,$\boldsymbol{b}$表示向量$\overrightarrow{AE}$,$\overrightarrow{DE}$,$\overrightarrow{AM}$,$\overrightarrow{AN}$.
(1)如图,在正方形$ABCD$中,$Q$为$BC$上一点,$AQ$交$BD$于$E$,$A$且$E$,$F$为$BD$的两个三等分点,则 (
BCD
)A. $\overrightarrow{AE} + \overrightarrow{AF} + \overrightarrow{AC} = 0$
B. $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD}$
C. $\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD}$
D. $\overrightarrow{FQ} = \frac{2}{3}\overrightarrow{AB} - \frac{1}{6}\overrightarrow{AD}$
(2)如图所示,已知在$\triangle ABC$中,$\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB}$,$DE// BC$,$DE$交$AC$于点$E$,$BC$边上的中线$AM$交$DE$于点$N$,设$\overrightarrow{AB} = \boldsymbol{a}$,$\overrightarrow{AC} = \boldsymbol{b}$,用$\boldsymbol{a}$,$\boldsymbol{b}$表示向量$\overrightarrow{AE}$,$\overrightarrow{DE}$,$\overrightarrow{AM}$,$\overrightarrow{AN}$.
答案:
对点训练2:
(1)BCD
(2)见解析
【解析】
(1)因为$\overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AC},$所以$\overrightarrow{AE} + \overrightarrow{AF} - \overrightarrow{AC} = 0,$故A
错误$.\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AB} + \frac{1}{3}\overrightarrow{BD} = \overrightarrow{AB} + \frac{1}{3}(\overrightarrow{AD} - \overrightarrow{AB}) = \frac{2}{3}\overrightarrow{AB} +$
$\frac{1}{3}\overrightarrow{AD},$故B正确$.\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BF} = \overrightarrow{AB} + \frac{2}{3}\overrightarrow{BD} = \overrightarrow{AB} + \frac{2}{3}(\overrightarrow{AD} -$
$\overrightarrow{AB}) = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD},$故C正确. 因为E为BD上靠近B的三等
分点,所以$\overrightarrow{BE} = \frac{1}{2}\overrightarrow{ED},$利用相似性质可得$\overrightarrow{BQ} = \frac{1}{2}\overrightarrow{AD},$则$\overrightarrow{FQ} =$
$\overrightarrow{BQ} - \overrightarrow{BF} = \frac{1}{2}\overrightarrow{AD} - \frac{2}{3}\overrightarrow{BD} = \frac{1}{2}\overrightarrow{AD} - \frac{2}{3}(\overrightarrow{AD} - \overrightarrow{AB}) = \frac{2}{3}\overrightarrow{AB} - \frac{1}{6}\overrightarrow{AD}.$
故D正确. 故选BCD.
$(2)\because DE // BC,\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} = \frac{2}{3}\boldsymbol{a},\therefore\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AC} = \frac{2}{3}\boldsymbol{b},$
$\because \triangle ADE \sim \triangle ABC,\therefore\overrightarrow{DE} = \frac{2}{3}\overrightarrow{BC} = \frac{2}{3}(\boldsymbol{b} - \boldsymbol{a}).$
$\because \triangle ADN \sim \triangle ABM,$且$\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB},\therefore\overrightarrow{AN} = \frac{2}{3}\overrightarrow{AM}.$
又$\because\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \boldsymbol{a} + \frac{1}{2}\overrightarrow{BC} = \boldsymbol{a} + \frac{1}{2}(\boldsymbol{b} - \boldsymbol{a}) = \frac{\boldsymbol{a} + \boldsymbol{b}}{2}$
$\therefore\overrightarrow{AN} = \frac{1}{3}(\boldsymbol{a} + \boldsymbol{b}).$
(1)BCD
(2)见解析
【解析】
(1)因为$\overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AC},$所以$\overrightarrow{AE} + \overrightarrow{AF} - \overrightarrow{AC} = 0,$故A
错误$.\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AB} + \frac{1}{3}\overrightarrow{BD} = \overrightarrow{AB} + \frac{1}{3}(\overrightarrow{AD} - \overrightarrow{AB}) = \frac{2}{3}\overrightarrow{AB} +$
$\frac{1}{3}\overrightarrow{AD},$故B正确$.\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BF} = \overrightarrow{AB} + \frac{2}{3}\overrightarrow{BD} = \overrightarrow{AB} + \frac{2}{3}(\overrightarrow{AD} -$
$\overrightarrow{AB}) = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD},$故C正确. 因为E为BD上靠近B的三等
分点,所以$\overrightarrow{BE} = \frac{1}{2}\overrightarrow{ED},$利用相似性质可得$\overrightarrow{BQ} = \frac{1}{2}\overrightarrow{AD},$则$\overrightarrow{FQ} =$
$\overrightarrow{BQ} - \overrightarrow{BF} = \frac{1}{2}\overrightarrow{AD} - \frac{2}{3}\overrightarrow{BD} = \frac{1}{2}\overrightarrow{AD} - \frac{2}{3}(\overrightarrow{AD} - \overrightarrow{AB}) = \frac{2}{3}\overrightarrow{AB} - \frac{1}{6}\overrightarrow{AD}.$
故D正确. 故选BCD.
$(2)\because DE // BC,\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} = \frac{2}{3}\boldsymbol{a},\therefore\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AC} = \frac{2}{3}\boldsymbol{b},$
$\because \triangle ADE \sim \triangle ABC,\therefore\overrightarrow{DE} = \frac{2}{3}\overrightarrow{BC} = \frac{2}{3}(\boldsymbol{b} - \boldsymbol{a}).$
$\because \triangle ADN \sim \triangle ABM,$且$\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB},\therefore\overrightarrow{AN} = \frac{2}{3}\overrightarrow{AM}.$
又$\because\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \boldsymbol{a} + \frac{1}{2}\overrightarrow{BC} = \boldsymbol{a} + \frac{1}{2}(\boldsymbol{b} - \boldsymbol{a}) = \frac{\boldsymbol{a} + \boldsymbol{b}}{2}$
$\therefore\overrightarrow{AN} = \frac{1}{3}(\boldsymbol{a} + \boldsymbol{b}).$
查看更多完整答案,请扫码查看