2025年成才之路高中新课程学习指导高中数学必修第二册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第117页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
对点训练2
求证:$\frac{\cos^2 \alpha}{\frac{1}{1 - \tan \frac{\alpha}{2}}} = \frac{1}{4} \sin 2\alpha$.
求证:$\frac{\cos^2 \alpha}{\frac{1}{1 - \tan \frac{\alpha}{2}}} = \frac{1}{4} \sin 2\alpha$.
答案:
对点训练2:【证明】 证法一:左边$= \frac{\cos^{2}\frac{\alpha}{2} - \sin^{2}\frac{\alpha}{2}}{\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} =$
$\frac{\cos^{2}\frac{\alpha}{2}\sin\frac{\alpha}{2} - \cos\frac{\alpha}{2}\cos\frac{\alpha}{2}\sin\frac{\alpha}{2}}{\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} =$
$\frac{\cos\frac{\alpha}{2}\sin\frac{\alpha}{2} - \cos\alpha}{\frac{1}{2}\sin\alpha\cos\alpha} = \frac{\frac{1}{2}\sin 2\alpha}{\frac{1}{2}\sin 2\alpha} =$右边.
$\therefore$原式成立.
证法二:左边$= \frac{\frac{\cos^{2}\alpha}{1 + \cos\alpha} - \frac{1 - \cos\alpha}{\sin\alpha}}{\sin\alpha} =$
$= \frac{\frac{1}{2}\sin\alpha\cos\alpha = \frac{1}{4}\sin 2\alpha} =右边$.
$\therefore$原式成立.
证法三:左边$= \frac{\frac{\cos^{2}\frac{\alpha}{2}\tan\frac{\alpha}{2}}{1 - \tan^{2}\frac{\alpha}{2}} = \frac{\frac{1}{2}\cos^{2}\alpha · \frac{2\tan\frac{\alpha}{2}}{1 - \tan^{2}\frac{\alpha}{2}}}{} =$
$\frac{\frac{1}{2}\cos^{2}\alpha · \tan\alpha = \frac{1}{2}\cos\alpha\sin\alpha = \frac{1}{4}\sin 2\alpha} =右边$.
$\therefore$原式成立.
$\frac{\cos^{2}\frac{\alpha}{2}\sin\frac{\alpha}{2} - \cos\frac{\alpha}{2}\cos\frac{\alpha}{2}\sin\frac{\alpha}{2}}{\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} =$
$\frac{\cos\frac{\alpha}{2}\sin\frac{\alpha}{2} - \cos\alpha}{\frac{1}{2}\sin\alpha\cos\alpha} = \frac{\frac{1}{2}\sin 2\alpha}{\frac{1}{2}\sin 2\alpha} =$右边.
$\therefore$原式成立.
证法二:左边$= \frac{\frac{\cos^{2}\alpha}{1 + \cos\alpha} - \frac{1 - \cos\alpha}{\sin\alpha}}{\sin\alpha} =$
$= \frac{\frac{1}{2}\sin\alpha\cos\alpha = \frac{1}{4}\sin 2\alpha} =右边$.
$\therefore$原式成立.
证法三:左边$= \frac{\frac{\cos^{2}\frac{\alpha}{2}\tan\frac{\alpha}{2}}{1 - \tan^{2}\frac{\alpha}{2}} = \frac{\frac{1}{2}\cos^{2}\alpha · \frac{2\tan\frac{\alpha}{2}}{1 - \tan^{2}\frac{\alpha}{2}}}{} =$
$\frac{\frac{1}{2}\cos^{2}\alpha · \tan\alpha = \frac{1}{2}\cos\alpha\sin\alpha = \frac{1}{4}\sin 2\alpha} =右边$.
$\therefore$原式成立.
例3. 已知函数 $f(x) = \sqrt{3} \sin(2x - \frac{\pi}{6}) + 2\sin^2(x - \frac{\pi}{12}) (x \in \mathbb{R})$.
(1) 求函数 $f(x)$ 的最小正周期;
(2) 求使函数 $f(x)$ 取得最大值的 $x$ 的集合.
(1) 求函数 $f(x)$ 的最小正周期;
(2) 求使函数 $f(x)$ 取得最大值的 $x$ 的集合.
答案:
例3:
(1)$\because f(x) = \sqrt{3}\sin\left( 2x - \frac{\pi}{6} \right) + 2\sin^{2}\left( x - \frac{\pi}{12} \right)$
$= \sqrt{3}\sin\left[ 2\left( x - \frac{\pi}{12} \right) \right] + 1 - \cos\left[ 2\left( x - \frac{\pi}{12} \right) \right]$
$= 2\left\{ \frac{\sqrt{3}}{2}\sin\left[ 2\left( x - \frac{\pi}{12} \right) \right] - \frac{1}{2}\cos\left[ 2\left( x - \frac{\pi}{12} \right) \right] \right\} + 1$
$= 2\sin\left[ 2\left( x - \frac{\pi}{12} \right) - \frac{\pi}{6} \right] + 1$
$= 2\sin\left( 2x - \frac{\pi}{3} \right) + 1$,
$\therefore f(x)$的最小正周期为$T = \frac{2\pi}{2} = \pi$.
(2)当$f(x)$取得最大时$,\sin\left( 2x - \frac{\pi}{3} \right) = 1$,
有$2x - \frac{\pi}{3} = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$,即$x = k\pi + \frac{5\pi}{12}(k \in \mathbf{Z})$,
$\therefore$所求$x$的集合为$\left\{ x \mid x = k\pi + \frac{5\pi}{12},k \in \mathbf{Z} \right\}$
(1)$\because f(x) = \sqrt{3}\sin\left( 2x - \frac{\pi}{6} \right) + 2\sin^{2}\left( x - \frac{\pi}{12} \right)$
$= \sqrt{3}\sin\left[ 2\left( x - \frac{\pi}{12} \right) \right] + 1 - \cos\left[ 2\left( x - \frac{\pi}{12} \right) \right]$
$= 2\left\{ \frac{\sqrt{3}}{2}\sin\left[ 2\left( x - \frac{\pi}{12} \right) \right] - \frac{1}{2}\cos\left[ 2\left( x - \frac{\pi}{12} \right) \right] \right\} + 1$
$= 2\sin\left[ 2\left( x - \frac{\pi}{12} \right) - \frac{\pi}{6} \right] + 1$
$= 2\sin\left( 2x - \frac{\pi}{3} \right) + 1$,
$\therefore f(x)$的最小正周期为$T = \frac{2\pi}{2} = \pi$.
(2)当$f(x)$取得最大时$,\sin\left( 2x - \frac{\pi}{3} \right) = 1$,
有$2x - \frac{\pi}{3} = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$,即$x = k\pi + \frac{5\pi}{12}(k \in \mathbf{Z})$,
$\therefore$所求$x$的集合为$\left\{ x \mid x = k\pi + \frac{5\pi}{12},k \in \mathbf{Z} \right\}$
对点训练3
(1) 函数 $f(x) = \sin(2x + \frac{\pi}{3}) - \sin(\frac{\pi}{6} - 2x) (0 \leq x \leq \frac{\pi}{2})$ 的值域为 (
A. $[\frac{1 - \sqrt{3}}{2}, \sqrt{2}]$
B. $[\frac{\sqrt{3} - 1}{2}, \sqrt{2}]$
C. $[\frac{1 - \sqrt{3}}{2}, \frac{\sqrt{3} - 1}{2}]$
D. $[\frac{1 - \sqrt{3}}{2}, 2]$
(2) 已知当 $x = x_0$ 时,函数 $f(x) = \sin x - 2\cos x$ 取得最大值,则 $\cos x_0 =$
(1) 函数 $f(x) = \sin(2x + \frac{\pi}{3}) - \sin(\frac{\pi}{6} - 2x) (0 \leq x \leq \frac{\pi}{2})$ 的值域为 (
A
)A. $[\frac{1 - \sqrt{3}}{2}, \sqrt{2}]$
B. $[\frac{\sqrt{3} - 1}{2}, \sqrt{2}]$
C. $[\frac{1 - \sqrt{3}}{2}, \frac{\sqrt{3} - 1}{2}]$
D. $[\frac{1 - \sqrt{3}}{2}, 2]$
(2) 已知当 $x = x_0$ 时,函数 $f(x) = \sin x - 2\cos x$ 取得最大值,则 $\cos x_0 =$
$- \frac{2\sqrt{5}}{5}$
.
答案:
对点训练3:
(1)A
(2)$- \frac{2\sqrt{5}}{5}$
(1)$f(x) = \sin\left( 2x + \frac{\pi}{3} \right) -$
$\sin\left( \frac{\pi}{6} - 2x \right) = \sin\left( 2x + \frac{\pi}{3} \right) - \cos\left( 2x + \frac{\pi}{3} \right) = \sqrt{2}\sin\left( 2x + \frac{\pi}{12} \right)$.
又$0 \leq x \leq \frac{\pi}{2}$,所以$\frac{\pi}{12} \leq 2x + \frac{\pi}{12} \leq \frac{13\pi}{12}$,所以$\frac{\sqrt{2} - \sqrt{6}}{4} \leq$
$\sin\left( 2x + \frac{\pi}{12} \right) \leq 1$,所以$\frac{1 - \sqrt{3}}{2} \leq \sqrt{2}\sin\left( 2x + \frac{\pi}{12} \right) \leq \sqrt{2}$,所以函数
$f(x) = \sqrt{2}\sin\left( 2x + \frac{\pi}{12} \right)$的值域为$\left[ \frac{1 - \sqrt{3}}{2},\sqrt{2} \right]$.
(2)由辅助角公式,得$f(x) = \sin x - 2\cos x =$
$\sqrt{5}\left( \frac{\sqrt{5}}{5}\sin x - \frac{2\sqrt{5}}{5}\cos x \right) = \sqrt{5}\sin(x - \varphi)$,其中$\sin\varphi = \frac{2\sqrt{5}}{5},\cos\varphi = \frac{\sqrt{5}}{5}$.
当$x = x_{0}$时,函数$f(x)$取得最大值,即$\sin\left( x_{0} - \varphi \right) = 1$,则
$x_{0} - \varphi = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$,即$x_{0} = 2k\pi + \frac{\pi}{2} + \varphi(k \in \mathbf{Z})$,所以
$\cos x_{0} = \cos\left( 2k\pi + \frac{\pi}{2} + \varphi \right) = - \sin\varphi = - \frac{2\sqrt{5}}{5}$.
(1)A
(2)$- \frac{2\sqrt{5}}{5}$
(1)$f(x) = \sin\left( 2x + \frac{\pi}{3} \right) -$
$\sin\left( \frac{\pi}{6} - 2x \right) = \sin\left( 2x + \frac{\pi}{3} \right) - \cos\left( 2x + \frac{\pi}{3} \right) = \sqrt{2}\sin\left( 2x + \frac{\pi}{12} \right)$.
又$0 \leq x \leq \frac{\pi}{2}$,所以$\frac{\pi}{12} \leq 2x + \frac{\pi}{12} \leq \frac{13\pi}{12}$,所以$\frac{\sqrt{2} - \sqrt{6}}{4} \leq$
$\sin\left( 2x + \frac{\pi}{12} \right) \leq 1$,所以$\frac{1 - \sqrt{3}}{2} \leq \sqrt{2}\sin\left( 2x + \frac{\pi}{12} \right) \leq \sqrt{2}$,所以函数
$f(x) = \sqrt{2}\sin\left( 2x + \frac{\pi}{12} \right)$的值域为$\left[ \frac{1 - \sqrt{3}}{2},\sqrt{2} \right]$.
(2)由辅助角公式,得$f(x) = \sin x - 2\cos x =$
$\sqrt{5}\left( \frac{\sqrt{5}}{5}\sin x - \frac{2\sqrt{5}}{5}\cos x \right) = \sqrt{5}\sin(x - \varphi)$,其中$\sin\varphi = \frac{2\sqrt{5}}{5},\cos\varphi = \frac{\sqrt{5}}{5}$.
当$x = x_{0}$时,函数$f(x)$取得最大值,即$\sin\left( x_{0} - \varphi \right) = 1$,则
$x_{0} - \varphi = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$,即$x_{0} = 2k\pi + \frac{\pi}{2} + \varphi(k \in \mathbf{Z})$,所以
$\cos x_{0} = \cos\left( 2k\pi + \frac{\pi}{2} + \varphi \right) = - \sin\varphi = - \frac{2\sqrt{5}}{5}$.
1. 若 $\cos \alpha = -\frac{4}{5}$, $\alpha$ 是第三象限角, 则 $\frac{1 + \tan \frac{\alpha}{2}}{1 - \tan \frac{\alpha}{2}} =$ (
A.$-\frac{1}{2}$
B.$\frac{1}{2}$
C.$2$
D.$-2$
A
)A.$-\frac{1}{2}$
B.$\frac{1}{2}$
C.$2$
D.$-2$
答案:
1.A $\because \alpha$是第三象限角$,\cos\alpha = - \frac{4}{5}$,
$\therefore \sin\alpha = - \frac{3}{5}$.
$\frac{1 + \tan\frac{\alpha}{2}}{1 - \tan\frac{\alpha}{2}} = \frac{\frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}}}{\frac{\cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}}} = \frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}} =$
$\frac{\frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}}}{\frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}}} = \frac{1 + \sin\alpha}{\cos\alpha} = \frac{1 - \frac{3}{5}}{- \frac{4}{5}} = - \frac{1}{2}$.故选A.
$\therefore \sin\alpha = - \frac{3}{5}$.
$\frac{1 + \tan\frac{\alpha}{2}}{1 - \tan\frac{\alpha}{2}} = \frac{\frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}}}{\frac{\cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}}} = \frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}} =$
$\frac{\frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}}}{\frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}}} = \frac{1 + \sin\alpha}{\cos\alpha} = \frac{1 - \frac{3}{5}}{- \frac{4}{5}} = - \frac{1}{2}$.故选A.
2. 若 $\theta \in [\frac{\pi}{4}, \frac{\pi}{2}]$, 且 $\sin 2\theta = \frac{3\sqrt{7}}{8}$,则 $\sin \theta =$ (
A.$\frac{3}{5}$
B.$\frac{4}{5}$
C.$\frac{\sqrt{7}}{4}$
D.$\frac{3}{4}$
D
)A.$\frac{3}{5}$
B.$\frac{4}{5}$
C.$\frac{\sqrt{7}}{4}$
D.$\frac{3}{4}$
答案:
2.D 本题主要考查简单的三角恒等变换、倍角公式及同角三角函数关系式$\theta \in \left[ \frac{\pi}{4},\frac{\pi}{2} \right]$,$\therefore 2\theta \in \left[ \frac{\pi}{2},\pi \right]$,$\therefore \sin\theta > 0$,
$\cos 2\theta < 0$,$\therefore \cos 2\theta = - \sqrt{1 - \sin^{2}2\theta} = - \frac{1}{8}$,又$\sin^{2}\theta =$
$\frac{1 - \cos 2\theta}{2}$,$\therefore \sin^{2}\theta = \frac{9}{16}$,$\therefore \sin\theta = \frac{3}{4}$,故选D.
$\cos 2\theta < 0$,$\therefore \cos 2\theta = - \sqrt{1 - \sin^{2}2\theta} = - \frac{1}{8}$,又$\sin^{2}\theta =$
$\frac{1 - \cos 2\theta}{2}$,$\therefore \sin^{2}\theta = \frac{9}{16}$,$\therefore \sin\theta = \frac{3}{4}$,故选D.
3. 设 $-3\pi < \alpha < -\frac{5\pi}{2}$,则化简 $\sqrt{\frac{1 - \cos(\alpha - \pi)}{2}}$ 的结果是 (
A.$\sin \frac{\alpha}{2}$
B.$\cos \frac{\alpha}{2}$
C.$-\cos \frac{\alpha}{2}$
D.$-\sin \frac{\alpha}{2}$
C
)A.$\sin \frac{\alpha}{2}$
B.$\cos \frac{\alpha}{2}$
C.$-\cos \frac{\alpha}{2}$
D.$-\sin \frac{\alpha}{2}$
答案:
3.C $\because - 3\pi < \alpha < - \frac{5\pi}{2}$,$\therefore - \frac{3\pi}{2} < \frac{\alpha}{2} < - \frac{5\pi}{4}$,$\therefore \cos\frac{\alpha}{2} < 0$,
$\therefore$原式$= \sqrt{\frac{1 + \cos\alpha}{2}} = \cos\frac{\alpha}{2} = - \cos\frac{\alpha}{2}$
$\therefore$原式$= \sqrt{\frac{1 + \cos\alpha}{2}} = \cos\frac{\alpha}{2} = - \cos\frac{\alpha}{2}$
4. 设 $a = \frac{1}{2} \cos 6° - \frac{\sqrt{3}}{2} \sin 6°$, $b = 2 \sin 13° \cos 13°$, $c = \sqrt{\frac{1 - \cos 50°}{2}}$,则有 (
A.$c < b < a$
B.$a < b < c$
C.$a < c < b$
D.$b < c < a$
C
)A.$c < b < a$
B.$a < b < c$
C.$a < c < b$
D.$b < c < a$
答案:
4.C $a = \sin 30^{\circ}\cos 6^{\circ} - \cos 30^{\circ}\sin 6^{\circ} = \sin\left( 30^{\circ} - 6^{\circ} \right) = \sin 24^{\circ}$,
$b = \sin 26^{\circ},c = \sqrt{\frac{2\sin^{2}25^{\circ}}{2}} = \sin 25^{\circ}$,$\therefore b > c > a$.故选C.
$b = \sin 26^{\circ},c = \sqrt{\frac{2\sin^{2}25^{\circ}}{2}} = \sin 25^{\circ}$,$\therefore b > c > a$.故选C.
5. 在平面直角坐标系 $xOy$ 中,以 $x$ 轴的非负半轴为始边作两个锐角 $\alpha$, $\beta$,它们的终边分别与单位圆相交于 $A$, $B$ 两点,已知 $A$, $B$ 的横坐标分别为 $\frac{1}{3}$, $\frac{2}{3}$,求 $\cos \frac{\alpha}{2} + \sin \frac{\beta}{2} + \tan \frac{\alpha}{2}$ 的值.
答案:
5.依题意,得$\cos\alpha = \frac{1}{3},\cos\beta = \frac{2}{3}$
因为$\alpha,\beta$为锐角,
所以$\cos\frac{\alpha}{2} + \sin\frac{\beta}{2} + \tan\frac{\alpha}{2} =$
$\sqrt{\frac{1 + \cos\alpha}{2}} + \sqrt{\frac{1 - \cos\beta}{2}} + \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}} =$
$\sqrt{\frac{1}{2} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{1}{2}} + \sqrt{\frac{1}{1 + \frac{1}{3}}} = \frac{\sqrt{2} + \sqrt{6}}{2}$
因为$\alpha,\beta$为锐角,
所以$\cos\frac{\alpha}{2} + \sin\frac{\beta}{2} + \tan\frac{\alpha}{2} =$
$\sqrt{\frac{1 + \cos\alpha}{2}} + \sqrt{\frac{1 - \cos\beta}{2}} + \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}} =$
$\sqrt{\frac{1}{2} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{1}{2}} + \sqrt{\frac{1}{1 + \frac{1}{3}}} = \frac{\sqrt{2} + \sqrt{6}}{2}$
查看更多完整答案,请扫码查看