2025年成才之路高中新课程学习指导高中数学必修第二册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第96页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
对点训练 1
(1) 已知$\alpha$是第三象限的角,$\cos\alpha = -\frac{12}{13}$, 则$\sin\alpha =$
A. $\frac{5}{13}$
B. $-\frac{5}{13}$
C. $\frac{5}{12}$
D. $-\frac{5}{12}$
(1) 已知$\alpha$是第三象限的角,$\cos\alpha = -\frac{12}{13}$, 则$\sin\alpha =$
A. $\frac{5}{13}$
B. $-\frac{5}{13}$
C. $\frac{5}{12}$
D. $-\frac{5}{12}$
答案:
(1)B
(1)B
(2) 已知$\tan\alpha = 2\left(0 < \alpha < \frac{\pi}{2}\right)$, 则$\sin\alpha =$
A.$\frac{\sqrt{5}}{5}$
B.$-\frac{2\sqrt{5}}{5}$
C.$-\frac{\sqrt{5}}{5}$
D.$\frac{2\sqrt{5}}{5}$
A.$\frac{\sqrt{5}}{5}$
B.$-\frac{2\sqrt{5}}{5}$
C.$-\frac{\sqrt{5}}{5}$
D.$\frac{2\sqrt{5}}{5}$
答案:
(2)D
(2)D
例 2. 已知$\frac{\tan\alpha}{\tan\alpha - 1} = 2$, 求下列各式的值:
(1) $\frac{2\sin\alpha - 3\cos\alpha}{4\sin\alpha - 9\cos\alpha}$;
(2) $\frac{2\sin^{2}\alpha - 3\cos^{2}\alpha}{4\sin^{2}\alpha - 9\cos^{2}\alpha}$;
(3) $4\sin^{2}\alpha - 3\sin\alpha\cos\alpha - 5\cos^{2}\alpha$.
【分析】所求式子都是关于$\sin\alpha$、$\cos\alpha$的分式齐次式(或可化为分式齐次式),将其分子、分母同除以$\cos\alpha$的整数次幂,就把所求式子用$\tan\alpha$表示,因此可先由已知条件求$\tan\alpha$的值,再求各式的值.
(1) $\frac{2\sin\alpha - 3\cos\alpha}{4\sin\alpha - 9\cos\alpha}$;
(2) $\frac{2\sin^{2}\alpha - 3\cos^{2}\alpha}{4\sin^{2}\alpha - 9\cos^{2}\alpha}$;
(3) $4\sin^{2}\alpha - 3\sin\alpha\cos\alpha - 5\cos^{2}\alpha$.
【分析】所求式子都是关于$\sin\alpha$、$\cos\alpha$的分式齐次式(或可化为分式齐次式),将其分子、分母同除以$\cos\alpha$的整数次幂,就把所求式子用$\tan\alpha$表示,因此可先由已知条件求$\tan\alpha$的值,再求各式的值.
答案:
例2:由$\frac{\tan \alpha }{\tan \alpha -1 } =2,$得$\tan \alpha =2.$
$(1)\frac{2\sin \alpha -3\cos \alpha }{4\sin \alpha -9\cos \alpha } =\frac{2\tan \alpha -3}{4\tan \alpha -9 } $
$\because \tan \alpha =2,\therefore $原式$=\frac{2× 2-3}{4× 2-9} =-1.$
$(2)\frac{2\sin^{2} \alpha -3\cos^{2} \alpha }{4\sin^{2} \alpha -9\cos^{2} \alpha } =\frac{2\tan^{2} \alpha -3}{4\tan^{2} \alpha -9 } $
$\because \tan \alpha =2,\therefore $原式$=\frac{2× 4-3}{4× 4-9} =\frac{5}{7} .$
$(3)4\sin^{2} \alpha -3\sin \alpha \cos \alpha -5\cos^{2} \alpha $
$=\frac{4\sin^{2} \alpha -3\sin \alpha \cos \alpha -5\cos^{2} \alpha }{\sin^{2} \alpha +\cos^{2} \alpha } $
$=\frac{4\tan^{2} \alpha -3\tan \alpha -5}{\tan^{2} \alpha +1 } $
$\because \tan \alpha =2,\therefore $原式$=\frac{4× 4-3× 2-5}{4+1} =1.$
$(1)\frac{2\sin \alpha -3\cos \alpha }{4\sin \alpha -9\cos \alpha } =\frac{2\tan \alpha -3}{4\tan \alpha -9 } $
$\because \tan \alpha =2,\therefore $原式$=\frac{2× 2-3}{4× 2-9} =-1.$
$(2)\frac{2\sin^{2} \alpha -3\cos^{2} \alpha }{4\sin^{2} \alpha -9\cos^{2} \alpha } =\frac{2\tan^{2} \alpha -3}{4\tan^{2} \alpha -9 } $
$\because \tan \alpha =2,\therefore $原式$=\frac{2× 4-3}{4× 4-9} =\frac{5}{7} .$
$(3)4\sin^{2} \alpha -3\sin \alpha \cos \alpha -5\cos^{2} \alpha $
$=\frac{4\sin^{2} \alpha -3\sin \alpha \cos \alpha -5\cos^{2} \alpha }{\sin^{2} \alpha +\cos^{2} \alpha } $
$=\frac{4\tan^{2} \alpha -3\tan \alpha -5}{\tan^{2} \alpha +1 } $
$\because \tan \alpha =2,\therefore $原式$=\frac{4× 4-3× 2-5}{4+1} =1.$
对点训练 2
已知$\tan\alpha = -\frac{1}{2}$, 求下列各式的值:
(1) $\sin\alpha + 2\cos\alpha$;
(2) $\frac{\cos\alpha - 5\sin\alpha}{3\cos\alpha + \sin\alpha}$;
(3) $\frac{\sin^{2}\alpha - \sin\alpha\cos\alpha - 3\cos^{2}\alpha}{5\sin\alpha\cos\alpha + \sin^{2}\alpha + 1}$;
(4) $2\sin^{2}\alpha - \sin\alpha\cos\alpha + \cos^{2}\alpha$.
已知$\tan\alpha = -\frac{1}{2}$, 求下列各式的值:
(1) $\sin\alpha + 2\cos\alpha$;
(2) $\frac{\cos\alpha - 5\sin\alpha}{3\cos\alpha + \sin\alpha}$;
(3) $\frac{\sin^{2}\alpha - \sin\alpha\cos\alpha - 3\cos^{2}\alpha}{5\sin\alpha\cos\alpha + \sin^{2}\alpha + 1}$;
(4) $2\sin^{2}\alpha - \sin\alpha\cos\alpha + \cos^{2}\alpha$.
答案:
对点训练$2:(1)\tan \alpha =\frac{\sin \alpha }{\cos \alpha } =-\frac{1}{2} ,$
$\therefore \cos \alpha =-2\sin \alpha .$
又$\sin^{2} \alpha +\cos^{2} \alpha =1,\therefore \sin^{2} \alpha +4\sin^{2} \alpha =1,$
$\therefore \sin^{2} \alpha =\frac{1}{5} ,\therefore \sin \alpha =\pm \frac{\sqrt{5} }{5} $
$\because \tan \alpha =-\frac{1}{2} \lt 0,\therefore \alpha$为第二,四象限角
当$\alpha$为第二象限角时$,\sin \alpha =\frac{\sqrt{5} }{5} ,\cos \alpha =-\frac{2\sqrt{5} }{5} ,$
$\sin \alpha +2\cos \alpha =-\frac{3\sqrt{5} }{5} ,$
当$\alpha$为第四象限角时$,\sin \alpha =-\frac{\sqrt{5} }{5} ,\cos \alpha =\frac{2\sqrt{5} }{5} ,$
$\sin \alpha +2\cos \alpha =\frac{3\sqrt{5} }{5} .$
$(2)\frac{\cos \alpha -5\sin \alpha }{3\cos \alpha +\sin \alpha } =\frac{1-5\tan \alpha }{3+\tan \alpha } =\frac{1-5× (-\frac{1}{2} )}{3-\frac{1}{2} } =\frac{7}{5} $
$(3)\frac{\sin^{2} \alpha -\sin \alpha \cos \alpha -3\cos^{2} \alpha }{5\sin \alpha \cos \alpha +\sin^{2} \alpha +1 } $
$=\frac{\sin^{2} \alpha -\sin \alpha \cos \alpha -3\cos^{2} \alpha }{5\sin \alpha \cos \alpha +2\sin^{2} \alpha +\cos^{2} \alpha } $
$=\frac{\tan^{2} \alpha -\tan \alpha -3}{2\tan^{2} \alpha +5\tan \alpha +1 } $
$=\frac{(-\frac{1}{2} )^{2} -(-\frac{1}{2} )-3}{2× (-\frac{1}{2} )^{2} +5× (-\frac{1}{2} )+1} $
$=\frac{\frac{1}{4} +\frac{1}{2} -3}{\frac{1}{2} -\frac{5}{2} +1} $
$=\frac{-\frac{9}{4} }{ -1} $
$=\frac{9}{4} $
$(4)2\sin^{2} \alpha -\sin \alpha \cos \alpha +\cos^{2} \alpha $
$=\frac{2\sin^{2} \alpha -\sin \alpha \cos \alpha +\cos^{2} \alpha }{\sin^{2} \alpha +\cos^{2} \alpha } $
$=\frac{2\tan^{2} \alpha -\tan \alpha +1}{\tan^{2} \alpha +1 } $
$=\frac{2× \frac{1}{4} -(-\frac{1}{2} )+1}{\frac{1}{4} +1} $
$=\frac{\frac{1}{2} +\frac{1}{2} +1}{\frac{5}{4} } $
$=\frac{8}{5}$
$\therefore \cos \alpha =-2\sin \alpha .$
又$\sin^{2} \alpha +\cos^{2} \alpha =1,\therefore \sin^{2} \alpha +4\sin^{2} \alpha =1,$
$\therefore \sin^{2} \alpha =\frac{1}{5} ,\therefore \sin \alpha =\pm \frac{\sqrt{5} }{5} $
$\because \tan \alpha =-\frac{1}{2} \lt 0,\therefore \alpha$为第二,四象限角
当$\alpha$为第二象限角时$,\sin \alpha =\frac{\sqrt{5} }{5} ,\cos \alpha =-\frac{2\sqrt{5} }{5} ,$
$\sin \alpha +2\cos \alpha =-\frac{3\sqrt{5} }{5} ,$
当$\alpha$为第四象限角时$,\sin \alpha =-\frac{\sqrt{5} }{5} ,\cos \alpha =\frac{2\sqrt{5} }{5} ,$
$\sin \alpha +2\cos \alpha =\frac{3\sqrt{5} }{5} .$
$(2)\frac{\cos \alpha -5\sin \alpha }{3\cos \alpha +\sin \alpha } =\frac{1-5\tan \alpha }{3+\tan \alpha } =\frac{1-5× (-\frac{1}{2} )}{3-\frac{1}{2} } =\frac{7}{5} $
$(3)\frac{\sin^{2} \alpha -\sin \alpha \cos \alpha -3\cos^{2} \alpha }{5\sin \alpha \cos \alpha +\sin^{2} \alpha +1 } $
$=\frac{\sin^{2} \alpha -\sin \alpha \cos \alpha -3\cos^{2} \alpha }{5\sin \alpha \cos \alpha +2\sin^{2} \alpha +\cos^{2} \alpha } $
$=\frac{\tan^{2} \alpha -\tan \alpha -3}{2\tan^{2} \alpha +5\tan \alpha +1 } $
$=\frac{(-\frac{1}{2} )^{2} -(-\frac{1}{2} )-3}{2× (-\frac{1}{2} )^{2} +5× (-\frac{1}{2} )+1} $
$=\frac{\frac{1}{4} +\frac{1}{2} -3}{\frac{1}{2} -\frac{5}{2} +1} $
$=\frac{-\frac{9}{4} }{ -1} $
$=\frac{9}{4} $
$(4)2\sin^{2} \alpha -\sin \alpha \cos \alpha +\cos^{2} \alpha $
$=\frac{2\sin^{2} \alpha -\sin \alpha \cos \alpha +\cos^{2} \alpha }{\sin^{2} \alpha +\cos^{2} \alpha } $
$=\frac{2\tan^{2} \alpha -\tan \alpha +1}{\tan^{2} \alpha +1 } $
$=\frac{2× \frac{1}{4} -(-\frac{1}{2} )+1}{\frac{1}{4} +1} $
$=\frac{\frac{1}{2} +\frac{1}{2} +1}{\frac{5}{4} } $
$=\frac{8}{5}$
查看更多完整答案,请扫码查看