2025年成才之路高中新课程学习指导高中数学必修第二册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年成才之路高中新课程学习指导高中数学必修第二册北师大版》

例1. (1)求值:$\cos 75^{\circ}=$
$\frac{\sqrt{6} - \sqrt{2}}{4}$
;
(2)求值:$\sin 7^{\circ} \cos 23^{\circ}+\sin 83^{\circ} \cos 67^{\circ}=$
$\frac{1}{2}$
;
(3)计算:$\cos (\alpha-35^{\circ}) \cos (25^{\circ}+\alpha)+\sin (\alpha-35^{\circ}) \sin (25^{\circ}+\alpha)=$
$\frac{1}{2}$
.
【分析】 尝试逆用公式求解,非特殊角转化为特殊角的差,然后正用$\mathrm{C}_{\alpha \pm \beta}$进行求值.
▶[归纳提升]
答案: 例1:
(1)$\frac{\sqrt{6} - \sqrt{2}}{4}$
(2)$\frac{1}{2}$
(3)$\frac{1}{2}$
(1)$\cos 75° = \cos(45° + 30°) = \cos 45° · \cos 30° - \sin 45° · \sin 30° = \frac{\sqrt{2}}{2} × \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} × \frac{1}{2}$
$ = \frac{\sqrt{6} - \sqrt{2}}{4}$
(2)原式$ = \cos 83° \cos 23° + \sin 83° \sin 23° = \cos(83° - 23°)$
$ = \cos 60° = \frac{1}{2}$
(3)原式$ = \cos[(\alpha - 35°) - (25° + \alpha)] = \cos(-60°) = \cos 60° = \frac{1}{2}$.
对点训练1
求下列各式的值.
(1)$\cos 40^{\circ} \cos 20^{\circ}-\sin 40^{\circ} \sin 20^{\circ}$;
(2)$\cos \frac{7}{3} \pi \cos \frac{11}{6} \pi+\sin \frac{2}{3} \pi \sin \frac{5}{6} \pi$.
答案: 对点训练1:
(1)原式$ = \cos(40° + 20°) = \cos 60° = \frac{1}{2}$
(2)原式$ = \cos(2\pi + \frac{\pi}{3}) \cos(2\pi - \frac{\pi}{6}) + \sin(\pi - \frac{\pi}{3}) \sin(\pi - \frac{\pi}{6})$
$ = \cos \frac{\pi}{3} \cos \frac{\pi}{6} + \sin \frac{\pi}{3} \sin \frac{\pi}{6} = \cos(\frac{\pi}{3} - \frac{\pi}{6})$
$ = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$.
例2. (1)已知$\sin \alpha=-\frac{4}{5},\sin \beta=\frac{5}{13}$,且$180^{\circ}<\alpha<270^{\circ},90^{\circ}<\beta<180^{\circ}$,则$\cos (\alpha-\beta)=$
$\frac{16}{65}$
;
(2)已知$\sin (\alpha+\frac{\pi}{4})=\frac{4}{5}$,且$\frac{\pi}{4}<\alpha<\frac{3 \pi}{4}$,求$\cos \alpha$的值.
【分析】 (1)求出$\cos \alpha,\cos \beta$,利用公式进行求解;
(2)利用$\cos \alpha=\cos [(\alpha+\frac{\pi}{4})-\frac{\pi}{4}]$进行凑角.
▶[归纳提升]
答案: 例2:
(1)$\frac{16}{65}$
(2)见解析
【解析】
(1)$\because 180° < \alpha < 270°$,$\therefore \cos \alpha = - \frac{3}{5}$;
又$\because 90° < \beta < 180°$,$\therefore \cos \beta = - \frac{12}{13}$;
$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
$ = ( - \frac{3}{5}) × ( - \frac{12}{13}) + ( - \frac{4}{5}) × \frac{5}{13} = \frac{16}{65}$
(2)$\because \frac{\pi}{4} < \alpha < \frac{3\pi}{4}$,$\therefore \frac{\pi}{2} < \alpha + \frac{\pi}{4} < \pi$,
$\therefore \cos(\alpha + \frac{\pi}{4}) = - \frac{3}{5}$,
$\cos \alpha = \cos[(\alpha + \frac{\pi}{4}) - \frac{\pi}{4}]$
$ = \cos(\alpha + \frac{\pi}{4}) · \cos \frac{\pi}{4} + \sin(\alpha + \frac{\pi}{4}) \sin \frac{\pi}{4}$
$ = - \frac{3}{5} × \frac{\sqrt{2}}{2} + \frac{4}{5} × \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{10}$.

查看更多完整答案,请扫码查看

关闭