2025年实验班中考数学压轴题
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年实验班中考数学压轴题 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第112页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
3. 在平面直角坐标系$ xOy $中,抛物线$ y = ax^2(a < 0) $经过直线$ y = -x $上的点$ A $,已知$ OA = 2\sqrt{2} $.
(1) 求该抛物线的解析式;
(2) 将抛物线$ y = ax^2(a < 0) $先向右平移1个单位,再向上平移$ k(k > 0) $个单位后,所得新抛物线与$ y $轴相交于点$ C $,如果$ \tan\angle OCA = \frac{4}{9} $,
① 求$ k $的值;
② 设新抛物线的顶点为$ D $,新抛物线上的$ B $是$ A $的对应点. 连接$ OD $,$ CD $,在新抛物线的对称轴上存在点$ P $,使得$ \angle OPB = \angle ODC $,求点$ P $的坐标.

(1) 求该抛物线的解析式;
(2) 将抛物线$ y = ax^2(a < 0) $先向右平移1个单位,再向上平移$ k(k > 0) $个单位后,所得新抛物线与$ y $轴相交于点$ C $,如果$ \tan\angle OCA = \frac{4}{9} $,
① 求$ k $的值;
② 设新抛物线的顶点为$ D $,新抛物线上的$ B $是$ A $的对应点. 连接$ OD $,$ CD $,在新抛物线的对称轴上存在点$ P $,使得$ \angle OPB = \angle ODC $,求点$ P $的坐标.
答案:
3.
(1)$\because$抛物线$y = ax^{2}(a < 0)$经过直线$y = -x$上的点$A$,
$\therefore$点$A$在第四象限。
设点$A(x,-x)$,由$OA = 2\sqrt{2}$得点$A(2,-2)$,
将点$A(2,-2)$代入$y = ax^{2}(a < 0)$,得$-2 = 4a$,
解得$a = -\frac{1}{2}$,$\therefore$该抛物线的解析式为$y = -\frac{1}{2}x^{2}$。
(2)①$\because$抛物线$y = -\frac{1}{2}x^{2}$先向右平移$1$个单位,再向上平移$k(k > 0)$个单位后,所得新抛物线解析式为$y = -\frac{1}{2}(x-1)^{2} + k$,
如图,过点$A$作$AH \perp y$轴,垂足为$H$,

在$Rt \triangle ACH$中,$\tan\angle OCA = \frac{AH}{CH} = \frac{4}{9}$,$\therefore CH = \frac{9}{2}$,
$\therefore OC = \frac{5}{2}$,$\therefore$点$C(0,\frac{5}{2})$,将点$C(0,\frac{5}{2})$代入$y = -\frac{1}{2}(x-1)^{2} + k$,解得$k = 3$。
②如图,设直线$y = -x$与新抛物线的对称轴$x = 1$交于点$E$,则点$E$的坐标为$(1,-1)$。
$\because$点$B$的坐标为$(3,1)$,$\therefore \angle OED = \angle DEB = 45^{\circ}$。
$\because$直线$x = 1$平行于$y$轴,$\therefore \angle COD = \angle ODE$。
$\because \frac{OC}{OD} = \frac{\sqrt{10}}{4}$,$\frac{OD}{DE} = \frac{\sqrt{10}}{4}$,$\because \frac{OC}{OD} = \frac{OD}{DE}$,
$\therefore \triangle OCD \sim \triangle DOE$,$\therefore \angle ODC = \angle OED = 45^{\circ}$。
$\because \angle OPB = \angle ODC = 45^{\circ}$,$\therefore \angle OPE < 45^{\circ}$。
分两种情况:当点$P$在线段$DE$的延长线上时,
$\because \angle OED = \angle DEB = 45^{\circ}$,$\therefore \angle OEP = \angle PEB = 135^{\circ}$,
$\therefore \angle OPE + \angle POE = \angle OPE + \angle EPB = 135^{\circ}$,
$\therefore \angle POE = \angle EPB$,$\therefore \triangle OPE \sim \triangle PBE$,$\therefore\frac{PE}{OE} = \frac{BE}{PE}$,
$\therefore PE^{2} = OE · BE = \sqrt{2} × 2\sqrt{2} = 4$,$\therefore PE = 2$,
$\therefore$点$P$的坐标为$(1,-3)$;
当点$P$在射线$ED$上时,
$\because \angle BDE = 45^{\circ}$,$\therefore \angle OPD < 45^{\circ}$,
点$P$在$ED$的延长线上,在直线$x = 1$上取点$F(1,1)$,
同理可得$\triangle OPF \sim \triangle PBD$,
$\therefore \frac{PF}{OF} = \frac{BD}{PD}$,$\therefore PF · PD = OF · BD$,$\therefore(2 + PD) · PD = \sqrt{2} × 2\sqrt{2} = 4$,
$\therefore PD = \sqrt{5} - 1$,$\therefore$点$P$的坐标为$(1,2 + \sqrt{5})$。
综上所述,点$P$的坐标为$(1,-3)$或$(1,2 + \sqrt{5})$。
一题多解
(2)②如图
(1),作$CH \perp OD$,
由等面积,可得$CH = \frac{OC · xD}{OD} = \frac{\frac{5}{2} × 1}{\sqrt{10}} = \frac{\sqrt{10}}{4}$。
$\because CD = \sqrt{(1-0)^{2} + (3-\frac{5}{2})^{2}} = \frac{\sqrt{5}}{2}$,
$\therefore \sin\angle CDH = \frac{CH}{CD} = \frac{\sqrt{2}}{2}$,$\therefore \angle ODC = 45^{\circ}$,
$\therefore \angle OPB = \angle ODC = 45^{\circ}$,
$\therefore$点$O$,$P$,$B$三点共圆,圆心为$Q$,$\therefore \angle OQB = 90^{\circ}$。

当点$P$在$OB$下方时,如图
(2)。
易证$\triangle OMQ \cong \triangle QNB(AAS)$,$\therefore$设$OM = NQ = m$,$QM = BN = n$,$\therefore\begin{cases} m + n = 3 \\n - m = 1 \end{cases}$,解得$\begin{cases} m = 1 \\n = 2 \end{cases}$,$\therefore Q(2,-1)$;$\therefore OQ = QP = \sqrt{5}$,利用两点距离公式易得$P(1,-3)$;
当点$P$在$OB$上方时,如图
(3)。

同理$Q(1,2)$,$\therefore QP = OQ = \sqrt{5}$,此时点$P(1,2 + \sqrt{5})$。
综上所述,点$P$的坐标为$(1,-3)$或$(1,2 + \sqrt{5})$。
3.
(1)$\because$抛物线$y = ax^{2}(a < 0)$经过直线$y = -x$上的点$A$,
$\therefore$点$A$在第四象限。
设点$A(x,-x)$,由$OA = 2\sqrt{2}$得点$A(2,-2)$,
将点$A(2,-2)$代入$y = ax^{2}(a < 0)$,得$-2 = 4a$,
解得$a = -\frac{1}{2}$,$\therefore$该抛物线的解析式为$y = -\frac{1}{2}x^{2}$。
(2)①$\because$抛物线$y = -\frac{1}{2}x^{2}$先向右平移$1$个单位,再向上平移$k(k > 0)$个单位后,所得新抛物线解析式为$y = -\frac{1}{2}(x-1)^{2} + k$,
如图,过点$A$作$AH \perp y$轴,垂足为$H$,
在$Rt \triangle ACH$中,$\tan\angle OCA = \frac{AH}{CH} = \frac{4}{9}$,$\therefore CH = \frac{9}{2}$,
$\therefore OC = \frac{5}{2}$,$\therefore$点$C(0,\frac{5}{2})$,将点$C(0,\frac{5}{2})$代入$y = -\frac{1}{2}(x-1)^{2} + k$,解得$k = 3$。
②如图,设直线$y = -x$与新抛物线的对称轴$x = 1$交于点$E$,则点$E$的坐标为$(1,-1)$。
$\because$点$B$的坐标为$(3,1)$,$\therefore \angle OED = \angle DEB = 45^{\circ}$。
$\because$直线$x = 1$平行于$y$轴,$\therefore \angle COD = \angle ODE$。
$\because \frac{OC}{OD} = \frac{\sqrt{10}}{4}$,$\frac{OD}{DE} = \frac{\sqrt{10}}{4}$,$\because \frac{OC}{OD} = \frac{OD}{DE}$,
$\therefore \triangle OCD \sim \triangle DOE$,$\therefore \angle ODC = \angle OED = 45^{\circ}$。
$\because \angle OPB = \angle ODC = 45^{\circ}$,$\therefore \angle OPE < 45^{\circ}$。
分两种情况:当点$P$在线段$DE$的延长线上时,
$\because \angle OED = \angle DEB = 45^{\circ}$,$\therefore \angle OEP = \angle PEB = 135^{\circ}$,
$\therefore \angle OPE + \angle POE = \angle OPE + \angle EPB = 135^{\circ}$,
$\therefore \angle POE = \angle EPB$,$\therefore \triangle OPE \sim \triangle PBE$,$\therefore\frac{PE}{OE} = \frac{BE}{PE}$,
$\therefore PE^{2} = OE · BE = \sqrt{2} × 2\sqrt{2} = 4$,$\therefore PE = 2$,
$\therefore$点$P$的坐标为$(1,-3)$;
当点$P$在射线$ED$上时,
$\because \angle BDE = 45^{\circ}$,$\therefore \angle OPD < 45^{\circ}$,
点$P$在$ED$的延长线上,在直线$x = 1$上取点$F(1,1)$,
同理可得$\triangle OPF \sim \triangle PBD$,
$\therefore \frac{PF}{OF} = \frac{BD}{PD}$,$\therefore PF · PD = OF · BD$,$\therefore(2 + PD) · PD = \sqrt{2} × 2\sqrt{2} = 4$,
$\therefore PD = \sqrt{5} - 1$,$\therefore$点$P$的坐标为$(1,2 + \sqrt{5})$。
综上所述,点$P$的坐标为$(1,-3)$或$(1,2 + \sqrt{5})$。
一题多解
(2)②如图
(1),作$CH \perp OD$,
由等面积,可得$CH = \frac{OC · xD}{OD} = \frac{\frac{5}{2} × 1}{\sqrt{10}} = \frac{\sqrt{10}}{4}$。
$\because CD = \sqrt{(1-0)^{2} + (3-\frac{5}{2})^{2}} = \frac{\sqrt{5}}{2}$,
$\therefore \sin\angle CDH = \frac{CH}{CD} = \frac{\sqrt{2}}{2}$,$\therefore \angle ODC = 45^{\circ}$,
$\therefore \angle OPB = \angle ODC = 45^{\circ}$,
$\therefore$点$O$,$P$,$B$三点共圆,圆心为$Q$,$\therefore \angle OQB = 90^{\circ}$。
当点$P$在$OB$下方时,如图
(2)。
易证$\triangle OMQ \cong \triangle QNB(AAS)$,$\therefore$设$OM = NQ = m$,$QM = BN = n$,$\therefore\begin{cases} m + n = 3 \\n - m = 1 \end{cases}$,解得$\begin{cases} m = 1 \\n = 2 \end{cases}$,$\therefore Q(2,-1)$;$\therefore OQ = QP = \sqrt{5}$,利用两点距离公式易得$P(1,-3)$;
当点$P$在$OB$上方时,如图
(3)。
同理$Q(1,2)$,$\therefore QP = OQ = \sqrt{5}$,此时点$P(1,2 + \sqrt{5})$。
综上所述,点$P$的坐标为$(1,-3)$或$(1,2 + \sqrt{5})$。
4. 中考新考法 最值问题 如图,在平面直角坐标系中,抛物线$ y = ax^2 + bx + 2(a \neq 0) $过点$ (1,3) $,交$ y $轴于点$ C $,交$ x $轴于$ A $,$ B $两点($ A $在$ B $的左侧),连接$ AC $,$ BC $,$ \tan\angle CBA = \frac{1}{2} $.
(1) 求抛物线的解析式;
(2) $ P $是直线$ BC $上方抛物线上的一动点,过点$ P $作$ PD \perp BC $于点$ D $,点$ Q $是抛物线对称轴上的一动点,连接$ PQ $,$ BQ $,当线段$ PD $长度取得最大值时,求$ PQ + BQ $的最小值;
(3) 在(2)中线段$ PD $长度取得最大值的条件下,连接$ PA $,将抛物线沿射线$ CB $方向平移得到新抛物线$ y' $,使得新抛物线$ y' $经过点$ B $,且与直线$ CB $相交于另一点$ M $,$ N $为新抛物线$ y' $上的一个动点,当$ \angle PAC + \angle BMN = 45° $,请直接写出所有符合条件的点$ N $的坐标.

(1) 求抛物线的解析式;
(2) $ P $是直线$ BC $上方抛物线上的一动点,过点$ P $作$ PD \perp BC $于点$ D $,点$ Q $是抛物线对称轴上的一动点,连接$ PQ $,$ BQ $,当线段$ PD $长度取得最大值时,求$ PQ + BQ $的最小值;
(3) 在(2)中线段$ PD $长度取得最大值的条件下,连接$ PA $,将抛物线沿射线$ CB $方向平移得到新抛物线$ y' $,使得新抛物线$ y' $经过点$ B $,且与直线$ CB $相交于另一点$ M $,$ N $为新抛物线$ y' $上的一个动点,当$ \angle PAC + \angle BMN = 45° $,请直接写出所有符合条件的点$ N $的坐标.
答案:
4.
(1)由题意,得$OC = 2$,$\tan\angle CBA = \frac{OC}{OB} = \frac{1}{2}$,
$\therefore OB = 4$,$\therefore B(4,0)$,$\therefore\begin{cases} a + b + 2 = 3 \\16a + 4b + 2 = 0 \end{cases}$,
解得$\begin{cases} a = -\frac{1}{2} \\b = \frac{3}{2} \end{cases}$,
$\therefore y = -\frac{1}{2}x^{2} + \frac{3}{2}x + 2$。
(2)如图
(1),过点$P$作$PE \perp AB$于点$E$,交$BC$于$F$,
$\therefore PE // y$轴,$\therefore \angle PFD = \angle BCO$。
$\because OC = 2$,$OB = 4$,$\therefore BC = \sqrt{2^{2} + 4^{2}} = 2\sqrt{5}$,
$\therefore \sin\angle PFD = \sin\angle BCO = \frac{OB}{BC} = \frac{2\sqrt{5}}{5}$,$\therefore PD = PF·\sin\angle PFD = \frac{2\sqrt{5}}{5}PF$,$\therefore$当$PF$最大时,$PD$最大。
$\because C(0,2)$,$B(4,0)$,
$\therefore$直线$BC$的解析式为$y = -\frac{1}{2}x + 2$。
设$P(m, -\frac{1}{2}m^{2} + \frac{3}{2}m + 2)$,$F(m, -\frac{1}{2}m + 2)$,
$\therefore PF = (-\frac{1}{2}m^{2} + \frac{3}{2}m + 2) - (-\frac{1}{2}m + 2) = -\frac{1}{2}(m-2)^{2} + 2$,$\therefore$当$m = 2$时,$PF$最大。
$\because -\frac{1}{2} × 2^{2} + \frac{3}{2} × 2 + 2 = 3$,$\therefore P(2,3)$。连接$AP$,交对称轴于点$Q$,则$PQ + BQ$最小,
最小值是$AP$的长,由$-\frac{1}{2}x^{2} + \frac{3}{2}x + 2 = 0$,得$x = 4$或$x = -1$,$\therefore A(-1,0)$,$\therefore AP = \sqrt{(-1-2)^{2} + 3^{2}} = 3\sqrt{2}$,
$\therefore PQ + BQ$的最小值为$3\sqrt{2}$。

(3)如图
(2),抛物线$y = -\frac{1}{2}x^{2} + \frac{3}{2}x + 2 = -\frac{1}{2}(x-\frac{3}{2})^{2} + 2 + \frac{9}{8}$向右平移$4$个单位,向下平移$2$个单位后为$y = -\frac{1}{2}(x-\frac{11}{2})^{2} + \frac{9}{8}$,即$y = -\frac{1}{2}x^{2} + \frac{11}{2}x - 14$。
$\because PE = AE = 3$,$\angle AEP = 90^{\circ}$,$\therefore \angle PAE = 45^{\circ}$。
$\because \angle AOC = 90^{\circ}$,$\therefore \angle AFO = 45^{\circ}$,
$\therefore \angle PAC + \angle ACF = \angle AFO = 45^{\circ}$。
$\because \tan\angle ACO = \frac{OA}{OC} = \frac{1}{2}$,$\tan\angle ABC = \frac{OC}{OB} = \frac{1}{2}$,
$\therefore \angle ACO = \angle ABC$,$\therefore \angle ABC + \angle PAC = 45^{\circ}$。
$\because \angle PAC + \angle BMN = 45^{\circ}$,$\therefore \angle ABC = \angle BMN$,
$\therefore MN // AB$,由题意,得点$C$平移到点$B$,点$B(4,0)$平移到点$M$,
$\therefore M(8,-2)$,$\therefore N(3,-2)$。
$\rightarrow$平行于$x$轴的直线上的点,纵坐标相同,也可看作点$N$是由点$A$向右平移$4$个单位长度,向下平移$2$个单位长度得到的
作$\angle BMN^{\prime} = \angle BMN$,交$y$轴于点$N^{\prime}$,交$x$轴于点$W$,
设$W(t,0)$。
$\because \angle WBM = \angle ABC$,$\angle WBM = \angle BMN^{\prime}$,$\therefore WB = WM$,
$\therefore(8-t)^{2} + 2^{2} = (t-4)^{2}$,$\therefore t = \frac{13}{2}$,
$\therefore W(\frac{13}{2},0)$,$\therefore MW$的解析式为$y = -\frac{4}{3}x + \frac{26}{3}$。
由$-\frac{4}{3}x + \frac{26}{3} = -\frac{1}{2}x^{2} + \frac{11}{2}x - 14$,得$x = 8$或$x = \frac{17}{3}$,
$\because -\frac{1}{2} × (\frac{17}{3})^{2} + \frac{11}{2} × \frac{17}{3} - 14 = \frac{10}{9}$,$\therefore N^{\prime}(\frac{17}{3},\frac{10}{9})$。
综上所述,点$N$的坐标为$(3,-2)$或$(\frac{17}{3},\frac{10}{9})$。
4.
(1)由题意,得$OC = 2$,$\tan\angle CBA = \frac{OC}{OB} = \frac{1}{2}$,
$\therefore OB = 4$,$\therefore B(4,0)$,$\therefore\begin{cases} a + b + 2 = 3 \\16a + 4b + 2 = 0 \end{cases}$,
解得$\begin{cases} a = -\frac{1}{2} \\b = \frac{3}{2} \end{cases}$,
$\therefore y = -\frac{1}{2}x^{2} + \frac{3}{2}x + 2$。
(2)如图
(1),过点$P$作$PE \perp AB$于点$E$,交$BC$于$F$,
$\therefore PE // y$轴,$\therefore \angle PFD = \angle BCO$。
$\because OC = 2$,$OB = 4$,$\therefore BC = \sqrt{2^{2} + 4^{2}} = 2\sqrt{5}$,
$\therefore \sin\angle PFD = \sin\angle BCO = \frac{OB}{BC} = \frac{2\sqrt{5}}{5}$,$\therefore PD = PF·\sin\angle PFD = \frac{2\sqrt{5}}{5}PF$,$\therefore$当$PF$最大时,$PD$最大。
$\because C(0,2)$,$B(4,0)$,
$\therefore$直线$BC$的解析式为$y = -\frac{1}{2}x + 2$。
设$P(m, -\frac{1}{2}m^{2} + \frac{3}{2}m + 2)$,$F(m, -\frac{1}{2}m + 2)$,
$\therefore PF = (-\frac{1}{2}m^{2} + \frac{3}{2}m + 2) - (-\frac{1}{2}m + 2) = -\frac{1}{2}(m-2)^{2} + 2$,$\therefore$当$m = 2$时,$PF$最大。
$\because -\frac{1}{2} × 2^{2} + \frac{3}{2} × 2 + 2 = 3$,$\therefore P(2,3)$。连接$AP$,交对称轴于点$Q$,则$PQ + BQ$最小,
最小值是$AP$的长,由$-\frac{1}{2}x^{2} + \frac{3}{2}x + 2 = 0$,得$x = 4$或$x = -1$,$\therefore A(-1,0)$,$\therefore AP = \sqrt{(-1-2)^{2} + 3^{2}} = 3\sqrt{2}$,
$\therefore PQ + BQ$的最小值为$3\sqrt{2}$。
(3)如图
(2),抛物线$y = -\frac{1}{2}x^{2} + \frac{3}{2}x + 2 = -\frac{1}{2}(x-\frac{3}{2})^{2} + 2 + \frac{9}{8}$向右平移$4$个单位,向下平移$2$个单位后为$y = -\frac{1}{2}(x-\frac{11}{2})^{2} + \frac{9}{8}$,即$y = -\frac{1}{2}x^{2} + \frac{11}{2}x - 14$。
$\because PE = AE = 3$,$\angle AEP = 90^{\circ}$,$\therefore \angle PAE = 45^{\circ}$。
$\because \angle AOC = 90^{\circ}$,$\therefore \angle AFO = 45^{\circ}$,
$\therefore \angle PAC + \angle ACF = \angle AFO = 45^{\circ}$。
$\because \tan\angle ACO = \frac{OA}{OC} = \frac{1}{2}$,$\tan\angle ABC = \frac{OC}{OB} = \frac{1}{2}$,
$\therefore \angle ACO = \angle ABC$,$\therefore \angle ABC + \angle PAC = 45^{\circ}$。
$\because \angle PAC + \angle BMN = 45^{\circ}$,$\therefore \angle ABC = \angle BMN$,
$\therefore MN // AB$,由题意,得点$C$平移到点$B$,点$B(4,0)$平移到点$M$,
$\therefore M(8,-2)$,$\therefore N(3,-2)$。
$\rightarrow$平行于$x$轴的直线上的点,纵坐标相同,也可看作点$N$是由点$A$向右平移$4$个单位长度,向下平移$2$个单位长度得到的
作$\angle BMN^{\prime} = \angle BMN$,交$y$轴于点$N^{\prime}$,交$x$轴于点$W$,
设$W(t,0)$。
$\because \angle WBM = \angle ABC$,$\angle WBM = \angle BMN^{\prime}$,$\therefore WB = WM$,
$\therefore(8-t)^{2} + 2^{2} = (t-4)^{2}$,$\therefore t = \frac{13}{2}$,
$\therefore W(\frac{13}{2},0)$,$\therefore MW$的解析式为$y = -\frac{4}{3}x + \frac{26}{3}$。
由$-\frac{4}{3}x + \frac{26}{3} = -\frac{1}{2}x^{2} + \frac{11}{2}x - 14$,得$x = 8$或$x = \frac{17}{3}$,
$\because -\frac{1}{2} × (\frac{17}{3})^{2} + \frac{11}{2} × \frac{17}{3} - 14 = \frac{10}{9}$,$\therefore N^{\prime}(\frac{17}{3},\frac{10}{9})$。
综上所述,点$N$的坐标为$(3,-2)$或$(\frac{17}{3},\frac{10}{9})$。
查看更多完整答案,请扫码查看