第99页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
9. (1)(2025·编写)如图,$\angle B= 90^{\circ}$,$\angle ACB= 30^{\circ}$,$AC= 2$,$AD= 4$,$DC= 2\sqrt{3}$,求证:$\triangle ABC \backsim \triangle ACD$.

(2)(2025·编写)如图,在$\triangle ABC和\triangle ADE$中,$\angle BAD= \angle CAE$,$\angle ABD= \angle ACE$. 求证:
①$AB \cdot AE= AC \cdot AD$;
②$\triangle ADE \backsim \triangle ABC$.

(2)(2025·编写)如图,在$\triangle ABC和\triangle ADE$中,$\angle BAD= \angle CAE$,$\angle ABD= \angle ACE$. 求证:
①$AB \cdot AE= AC \cdot AD$;
②$\triangle ADE \backsim \triangle ABC$.
答案:
(1)[证明]$\because ∠B = 90^{\circ}, ∠ACB = 30^{\circ}, AC = 2,$
$\therefore AB = \frac{1}{2}AC = 1, BC = \frac{\sqrt{3}}{2}AC = \sqrt{3}. \because AD = 4, DC = 2\sqrt{3},$
$\therefore \frac{AB}{AC} = \frac{1}{2}, \frac{BC}{CD} = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2}, \frac{AC}{AD} = \frac{2}{4} = \frac{1}{2},$
$\therefore \frac{AB}{AC} = \frac{BC}{CD} = \frac{AC}{AD}, \therefore △ABC \sim △ACD.$
(2)[证明]①$\because ∠BAD = ∠CAE, ∠ABD = ∠ACE,$
$\therefore △ABD \sim △ACE, \therefore \frac{AB}{AC} = \frac{AD}{AE}, \therefore AB \cdot AE = AC \cdot AD.$
②$\because ∠BAD = ∠CAE, \therefore ∠BAD + ∠DAC = ∠CAE + ∠DAC,$
即$∠BAC = ∠DAE$. 由①得$\frac{AB}{AC} = \frac{AD}{AE}, \therefore \frac{AB}{AD} = \frac{AC}{AE}, \therefore △ADE \sim △ABC.$
(1)[证明]$\because ∠B = 90^{\circ}, ∠ACB = 30^{\circ}, AC = 2,$
$\therefore AB = \frac{1}{2}AC = 1, BC = \frac{\sqrt{3}}{2}AC = \sqrt{3}. \because AD = 4, DC = 2\sqrt{3},$
$\therefore \frac{AB}{AC} = \frac{1}{2}, \frac{BC}{CD} = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2}, \frac{AC}{AD} = \frac{2}{4} = \frac{1}{2},$
$\therefore \frac{AB}{AC} = \frac{BC}{CD} = \frac{AC}{AD}, \therefore △ABC \sim △ACD.$
(2)[证明]①$\because ∠BAD = ∠CAE, ∠ABD = ∠ACE,$
$\therefore △ABD \sim △ACE, \therefore \frac{AB}{AC} = \frac{AD}{AE}, \therefore AB \cdot AE = AC \cdot AD.$
②$\because ∠BAD = ∠CAE, \therefore ∠BAD + ∠DAC = ∠CAE + ∠DAC,$
即$∠BAC = ∠DAE$. 由①得$\frac{AB}{AC} = \frac{AD}{AE}, \therefore \frac{AB}{AD} = \frac{AC}{AE}, \therefore △ADE \sim △ABC.$
10. (2025·编写)如图,已知$AB // A^{\prime}B^{\prime}$,$\frac{B^{\prime}C^{\prime}}{BC}= \frac{OB^{\prime}}{OB}$,$\frac{A^{\prime}C^{\prime}}{AC}= \frac{OA^{\prime}}{OA}$. 求证:$\triangle ABC \backsim \triangle A^{\prime}B^{\prime}C^{\prime}$.

答案:
[证明]$\because AB // A'B',$
$\therefore △OA'B' \sim △OAB,$
$\therefore \frac{A'B'}{AB} = \frac{OB'}{OB} = \frac{OA'}{OA}.$
$\because \frac{B'C'}{BC} = \frac{OB'}{OB}, \frac{A'C'}{AC} = \frac{OA'}{OA},$
$\therefore \frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC},$
$\therefore △ABC \sim △A'B'C'.$
$\therefore △OA'B' \sim △OAB,$
$\therefore \frac{A'B'}{AB} = \frac{OB'}{OB} = \frac{OA'}{OA}.$
$\because \frac{B'C'}{BC} = \frac{OB'}{OB}, \frac{A'C'}{AC} = \frac{OA'}{OA},$
$\therefore \frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC},$
$\therefore △ABC \sim △A'B'C'.$
11. (2025·编写)如图,在正方形网格中有5个三角形(三角形的顶点均在格点上):①$\triangle ABC$,②$\triangle ADE$,③$\triangle AEF$,④$\triangle AFH$,⑤$\triangle AHG$,在②至⑤中,与①相似的三角形是______.(填序号)

答案:
②④
12. (2025·编写)如图,在$\triangle ABC$中,$\angle BAC= 45^{\circ}$,$\angle ACB= 30^{\circ}$,将$\triangle ABC绕点A顺时针旋转得到\triangle AB_{1}C_{1}$,当$C$,$B_{1}$,$C_{1}$三点共线时,旋转角为$\alpha$,连接$BB_{1}交AC于点D$,有以下结论:①$\triangle AC_{1}C$为等腰三角形;②$CA= CB_{1}$;③$\alpha=135^{\circ}$;④$\triangle AB_{1}D \backsim \triangle ACB_{1}$;⑤$\frac{AB}{B_{1}C}= \frac{\sqrt{6}-\sqrt{2}}{2}$. 其中正确结论的序号为______.

答案:
①②④⑤
13. (2025·编写)如图,在边长为4的正方形$ABCD$中,$E$,$F分别是BC$,$CD$的中点,$DE与AF交于点G$,$AF的中点为H$,连接$BG$,$DH$. 给出下列结论:①$AF \perp DE$;②$DG= \frac{8}{5}$;③$HD // BG$;④$\triangle ABG \backsim \triangle DHF$. 其中正确的结论有______.(请填上所有正确结论的序号)

答案:
①④
14. (2025·编写)如图,在正方形$ABCD$中,点$E$,$F分别在边AD$,$AB$上,且$AE= AF$,又$AG \perp BE于点G$. 求证:
(1)$\frac{AF}{AG}= \frac{BC}{BG}$;
(2)$GF \perp GC$.

(1)$\frac{AF}{AG}= \frac{BC}{BG}$;
(2)$GF \perp GC$.
答案:
(1)$\because AG$是$Rt△ABE$的斜边$BE$上的高,
$\therefore Rt△AGE \sim Rt△BGA, \therefore \frac{AE}{AG} = \frac{AB}{BG}.$
$\because AE = AF, AB = BC, \therefore \frac{AF}{AG} = \frac{BC}{BG}.$
(2)由$Rt△AGE \sim Rt△BGA$, 得$∠GAF = ∠GEA.$
$\because AD // BC, \therefore ∠GEA = ∠CBG, \therefore ∠GAF = ∠CBG;$
$\because \frac{AF}{AG} = \frac{BC}{BG}, \therefore △AGF \sim △BGC, \therefore ∠AGF = ∠BGC;$
$\because ∠AGF + ∠FGB = 90^{\circ}, \therefore ∠BGC + ∠FGB = 90^{\circ},$
$\therefore GF \perp GC.$
(1)$\because AG$是$Rt△ABE$的斜边$BE$上的高,
$\therefore Rt△AGE \sim Rt△BGA, \therefore \frac{AE}{AG} = \frac{AB}{BG}.$
$\because AE = AF, AB = BC, \therefore \frac{AF}{AG} = \frac{BC}{BG}.$
(2)由$Rt△AGE \sim Rt△BGA$, 得$∠GAF = ∠GEA.$
$\because AD // BC, \therefore ∠GEA = ∠CBG, \therefore ∠GAF = ∠CBG;$
$\because \frac{AF}{AG} = \frac{BC}{BG}, \therefore △AGF \sim △BGC, \therefore ∠AGF = ∠BGC;$
$\because ∠AGF + ∠FGB = 90^{\circ}, \therefore ∠BGC + ∠FGB = 90^{\circ},$
$\therefore GF \perp GC.$
查看更多完整答案,请扫码查看