第119页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
13. (2025·编写)如图,以点$O$为位似中心,将边长为$256的正方形OABC$依次作位似变换,经第一次变化后得正方形$OA_1B_1C_1$,其边长$OA_1缩小为OA的\frac{1}{2}$,经第二次变化后得正方形$OA_2B_2C_2$,其边长$OA_2缩小为OA_1的\frac{1}{2}$,经第三次变化后得正方形$OA_3B_3C_3$,其边长$OA_3缩小为OA_2的\frac{1}{2}$,……依此规律,经第$n$次变化后,所得正方形$OA_nB_nC_n的边长为正方形OABC$边长的倒数,则$n = $____。

答案:
16
14. (2025·编写)如图,在四边形$ABCD$中,$AD = 2$,$AB = 5$,$BC = CD$,且$\angle BCD = 90^{\circ}$,求$AC$的最大值。

答案:
【解】如图,在直线$AB$的右侧作等腰直角三角形
$\triangle ABE$,使得$EB = EA$,$\angle AEB = 90^{\circ}$.
$\because AB = 5$,$\therefore AE = BE = \frac{5\sqrt{2}}{2}$.
$\because \angle ABE = \angle DBC = 45^{\circ}$,$\therefore \angle ABD = \angle EBC$.
$\because \frac{AB}{EB} = \frac{BD}{BC} = \sqrt{2}$,$\therefore \triangle ABD\backsim \triangle EBC$,
$\therefore \frac{AD}{EC} = \frac{AB}{EB} = \sqrt{2}$.
$\because AD = 2$,$\therefore EC = \sqrt{2}$.
$\because AC\leqslant AE + EC$,$\therefore AC\leqslant \frac{7\sqrt{2}}{2}$,$\therefore AC$的最大值为$\frac{7\sqrt{2}}{2}$.
【解】如图,在直线$AB$的右侧作等腰直角三角形
$\triangle ABE$,使得$EB = EA$,$\angle AEB = 90^{\circ}$.
$\because AB = 5$,$\therefore AE = BE = \frac{5\sqrt{2}}{2}$.
$\because \angle ABE = \angle DBC = 45^{\circ}$,$\therefore \angle ABD = \angle EBC$.
$\because \frac{AB}{EB} = \frac{BD}{BC} = \sqrt{2}$,$\therefore \triangle ABD\backsim \triangle EBC$,
$\therefore \frac{AD}{EC} = \frac{AB}{EB} = \sqrt{2}$.
$\because AD = 2$,$\therefore EC = \sqrt{2}$.
$\because AC\leqslant AE + EC$,$\therefore AC\leqslant \frac{7\sqrt{2}}{2}$,$\therefore AC$的最大值为$\frac{7\sqrt{2}}{2}$.
15. (2025·编写)如图,在$\triangle ABC$中,$P'是边AB$上一点,四边形$P'Q'M'N'$是正方形,点$Q'$,$M'在边BC$上,点$N'在\triangle ABC$内。连接$BN'$,并延长交$AC于点N$,过点$N作NM\perp BC于点M$,$NP\perp MN交AB于点P$,$PQ\perp BC于点Q$。
(1)求证:四边形$PQMN$为正方形;
(2)若$\angle A = 90^{\circ}$,$AC = 1.5m$,$\triangle ABC的面积 = 1.5m^2$,求$PN$的长。

(1)求证:四边形$PQMN$为正方形;
(2)若$\angle A = 90^{\circ}$,$AC = 1.5m$,$\triangle ABC的面积 = 1.5m^2$,求$PN$的长。
答案:
(1)【证明】$\because NM\perp BC$,$NP\perp MN$,$PQ\perp BC$,$\therefore$ 四边形$PQMN$为矩形. $\because$ 四边形$P'Q'M'N'$是正方形,$\therefore PN// P'N'$,$\therefore \frac{P'N'}{PN} = \frac{BN'}{BN}$. $\because MN// M'N'$,$\therefore \frac{M'N'}{MN} = \frac{BN'}{BN}$,$\therefore \frac{P'N'}{PN} = \frac{M'N'}{MN}$. 而$P'N' = M'N'$,$\therefore PN = MN$,$\therefore$ 四边形$PQMN$为正方形.
(2)【解】如图,作$AD\perp BC$于点$D$,$AD$交$PN$于点$E$.
$\because \triangle ABC$的面积$= 1.5$,$\therefore \frac{1}{2}AB\cdot AC = 1.5$,
$\therefore AB = 2$,$\therefore BC = \sqrt{2^{2} + 1.5^{2}} = 2.5$. $\because \frac{1}{2}BC\cdot AD = 1.5$,$\therefore AD = \frac{2\times 1.5}{2.5} = \frac{6}{5}$. 设$PN = x$,则$PQ = DE = x$,$AE = \frac{6}{5} - x$. $\because PN// BC$,
$\therefore \triangle APN\backsim \triangle ABC$,$\therefore \frac{AE}{AD} = \frac{PN}{BC}$,即$\frac{\frac{6}{5} - x}{\frac{6}{5}} = \frac{x}{2.5}$,
解得$x = \frac{30}{37}$,即$PN$的长为$\frac{30}{37}m$.
(1)【证明】$\because NM\perp BC$,$NP\perp MN$,$PQ\perp BC$,$\therefore$ 四边形$PQMN$为矩形. $\because$ 四边形$P'Q'M'N'$是正方形,$\therefore PN// P'N'$,$\therefore \frac{P'N'}{PN} = \frac{BN'}{BN}$. $\because MN// M'N'$,$\therefore \frac{M'N'}{MN} = \frac{BN'}{BN}$,$\therefore \frac{P'N'}{PN} = \frac{M'N'}{MN}$. 而$P'N' = M'N'$,$\therefore PN = MN$,$\therefore$ 四边形$PQMN$为正方形.
(2)【解】如图,作$AD\perp BC$于点$D$,$AD$交$PN$于点$E$.
$\because \triangle ABC$的面积$= 1.5$,$\therefore \frac{1}{2}AB\cdot AC = 1.5$,
$\therefore AB = 2$,$\therefore BC = \sqrt{2^{2} + 1.5^{2}} = 2.5$. $\because \frac{1}{2}BC\cdot AD = 1.5$,$\therefore AD = \frac{2\times 1.5}{2.5} = \frac{6}{5}$. 设$PN = x$,则$PQ = DE = x$,$AE = \frac{6}{5} - x$. $\because PN// BC$,
$\therefore \triangle APN\backsim \triangle ABC$,$\therefore \frac{AE}{AD} = \frac{PN}{BC}$,即$\frac{\frac{6}{5} - x}{\frac{6}{5}} = \frac{x}{2.5}$,
解得$x = \frac{30}{37}$,即$PN$的长为$\frac{30}{37}m$.
查看更多完整答案,请扫码查看