第122页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
11. (2022·长沙)如图,在平面直角坐标系中,已知点$A(2,0)$,$B(4,3)$,$D(5,0)$,$\triangle ABC与\triangle DEF$位似,原点$O$是位似中心,则点$E$的坐标是____。

答案:
$(10,7.5)$
12. (2025·编写)如图,在平面直角坐标系中,点$A$,$B$,$C$,$D的坐标分别为(-2,5)$,$(0,5)$,$(0,-1)$,$(4,-1)$。若线段$AB和CD$是位似图形,位似中心在$y$轴上,则位似中心的坐标为____。

答案:
$(0,3)$
13. (2025·编写)如图,在平面直角坐标系中,$\triangle ABC的顶点A$在第二象限,点$B的坐标为(-2,0)$,点$C的坐标为(-1,0)$,以点$C$为位似中心,在$x轴的下方作\triangle ABC的位似图形\triangle A'B'C$。若点$A的对应点A'的坐标为(2,-3)$,点$B的对应点B'的坐标为(1,0)$,则点$A$的坐标为____。

答案:
$(-\frac{5}{2},\frac{3}{2})$
14. (2025·编写)如图,在矩形$ABCD$中,$AB = 9$,$BC = 6$,点$E$,$F分别在BC$,$CD$上。若$DF = 2$,$\angle EAF = 45^{\circ}$,求$BE$的长度。

答案:
如图,在$AB$,$CD$上截取$AM = DN = 6$,连接$MN$,交$AE$于点$H$,连接$FH$,延长$CD$至点$G$,使$DG = MH$,连接$AG$。

$\because AM = DN = 6$,$AM // DN$,
$\therefore$四边形$AMND$是平行四边形。
$\because \angle ADC = 90^{\circ}$,$AD = DN = 6$,
$\therefore$四边形$AMND$是正方形,
$\therefore MN = AD = 6$,$\angle AMN = \angle ADF = 90^{\circ}$。
$\because AM = AD = 6$,$\angle AMH = \angle ADG = 90^{\circ}$,$MH = DG$,
$\therefore \triangle ADG \cong \triangle AMH(SAS)$,
$\therefore \angle DAG = \angle MAH$,$AG = AH$。
$\because \angle EAF = 45^{\circ}$,
$\therefore \angle MAH + \angle DAF = 45^{\circ} = \angle DAF + \angle GAD$,
$\therefore \angle GAF = 45^{\circ} = \angle EAF$,且$AG = AH$,$AF = AF$,
$\therefore \triangle AFH \cong \triangle AFG(SAS)$,
$\therefore FH = FG$。
$\because DF = 2$,
$\therefore FN = 4$,$GF = 2 + DG = 2 + MH$。
$\because FH^{2} = HN^{2} + FN^{2}$,
$\therefore (2 + MH)^{2} = (6 - MH)^{2} + 16$,
$\therefore MH = 3$。
$\because \angle BAE = \angle MAH$,$\angle AMN = \angle ABC = 90^{\circ}$,
$\therefore \triangle AMH \sim \triangle ABE$,
$\therefore \frac{AM}{AB} = \frac{MH}{BE}$,
$\therefore \frac{6}{9} = \frac{3}{BE}$,
$\therefore BE = \frac{9}{2}$。
如图,在$AB$,$CD$上截取$AM = DN = 6$,连接$MN$,交$AE$于点$H$,连接$FH$,延长$CD$至点$G$,使$DG = MH$,连接$AG$。
$\because AM = DN = 6$,$AM // DN$,
$\therefore$四边形$AMND$是平行四边形。
$\because \angle ADC = 90^{\circ}$,$AD = DN = 6$,
$\therefore$四边形$AMND$是正方形,
$\therefore MN = AD = 6$,$\angle AMN = \angle ADF = 90^{\circ}$。
$\because AM = AD = 6$,$\angle AMH = \angle ADG = 90^{\circ}$,$MH = DG$,
$\therefore \triangle ADG \cong \triangle AMH(SAS)$,
$\therefore \angle DAG = \angle MAH$,$AG = AH$。
$\because \angle EAF = 45^{\circ}$,
$\therefore \angle MAH + \angle DAF = 45^{\circ} = \angle DAF + \angle GAD$,
$\therefore \angle GAF = 45^{\circ} = \angle EAF$,且$AG = AH$,$AF = AF$,
$\therefore \triangle AFH \cong \triangle AFG(SAS)$,
$\therefore FH = FG$。
$\because DF = 2$,
$\therefore FN = 4$,$GF = 2 + DG = 2 + MH$。
$\because FH^{2} = HN^{2} + FN^{2}$,
$\therefore (2 + MH)^{2} = (6 - MH)^{2} + 16$,
$\therefore MH = 3$。
$\because \angle BAE = \angle MAH$,$\angle AMN = \angle ABC = 90^{\circ}$,
$\therefore \triangle AMH \sim \triangle ABE$,
$\therefore \frac{AM}{AB} = \frac{MH}{BE}$,
$\therefore \frac{6}{9} = \frac{3}{BE}$,
$\therefore BE = \frac{9}{2}$。
15. (2025·彭州)【观察与猜想】
(1) 如图$1$,$O是矩形ABCD$内一点,过点$O的直线EF \perp MN$,分别交矩形的边于点$E$,$F$,$M$,$N$。若$AD = 10$,$CD = 7$,$EF = 8$,则$MN = $____。
【类比探究】
(2) 如图$2$,在平行四边形$ABCD$中,点$E$,$M分别在边AB$,$BC$上,连接$DM与CE交于点O$。若$\angle DOE = \angle B$,求证:$CE \cdot AB = DM \cdot BC$。
【拓展延伸】
(3) 如图$3$,在四边形$ABCD$中,$BC = 17\frac{1}{5}$,$AB = 4$,$\angle B = \angle ADC = 120^{\circ}$,

$\frac{CD}{AD} = \frac{4}{5}$,点$M在边BC$上,连接$AC与DM交于点O$,当$\angle AOD = \angle B$时,求$\frac{AC}{DM}$的值。


(1) 如图$1$,$O是矩形ABCD$内一点,过点$O的直线EF \perp MN$,分别交矩形的边于点$E$,$F$,$M$,$N$。若$AD = 10$,$CD = 7$,$EF = 8$,则$MN = $____。
【类比探究】
(2) 如图$2$,在平行四边形$ABCD$中,点$E$,$M分别在边AB$,$BC$上,连接$DM与CE交于点O$。若$\angle DOE = \angle B$,求证:$CE \cdot AB = DM \cdot BC$。
【拓展延伸】
(3) 如图$3$,在四边形$ABCD$中,$BC = 17\frac{1}{5}$,$AB = 4$,$\angle B = \angle ADC = 120^{\circ}$,
$\frac{CD}{AD} = \frac{4}{5}$,点$M在边BC$上,连接$AC与DM交于点O$,当$\angle AOD = \angle B$时,求$\frac{AC}{DM}$的值。
答案:
(1)【解】如图,过点$M$作$MQ \perp CD$于点$Q$,过点$E$作$EP \perp BC$于点$P$。

则四边形$ABPE$,四边形$BCQM$是矩形,
$\therefore PE = AB = CD = 7$,$MQ = BC = AD = 10$。
易知,$\angle PEF = \angle QMN$。
$\because \angle EPF = \angle MQN = 90^{\circ}$,$\therefore \triangle EPF \sim \triangle MQN$,
$\therefore \frac{EF}{MN} = \frac{PE}{MQ}$,
$\therefore \frac{8}{MN} = \frac{7}{10}$,$\therefore MN = \frac{80}{7}$。
故答案为$\frac{80}{7}$。
(2)【证明】$\because \angle DOE = \angle COM$,$\angle DOE = \angle B$,
$\therefore \angle B = \angle COM$。
又$\because \angle MCO = \angle ECB$,$\therefore \triangle COM \sim \triangle CBE$,
$\therefore \frac{CO}{CM} = \frac{CB}{CE}$,$\angle DMC = \angle BEC$。
$\because$四边形$ABCD$是平行四边形,
$\therefore AB // CD$,$AB = CD$,$\therefore \angle DCO = \angle BEC$,
$\therefore \angle DMC = \angle DCO$。
又$\because \angle ODC = \angle CDM$,
$\therefore \triangle DOC \sim \triangle DCM$,$\therefore \frac{CO}{CM} = \frac{DC}{DM}$,$\therefore \frac{CB}{CE} = \frac{DC}{DM}$,
$\therefore CB \cdot DM = CE \cdot DC$,
$\therefore CB \cdot DM = CE \cdot AB$。
(3)【解】如图,过点$D$作$DE // BC$交$BA$的延长线于点$E$,过点$C$作$CF // AB$交$ED$的延长线于点$F$
$\therefore$四边形$BEFC$是平行四边形,
$\therefore BE = CF$,$BC = EF$,$\angle B = \angle ADC = \angle CFE = 120^{\circ}$,
$\therefore \angle E = 60^{\circ}$。
在$EF$上截取$EG = EA$,连接$AG$,则$\triangle EAG$为等边三角形,

$\therefore \angle AGD = 120^{\circ} = \angle CFE = \angle ADC$,
$\therefore \angle GAD + \angle GDA = \angle GDA + \angle FDC = 60^{\circ}$,
$\therefore \angle GAD = \angle FDC$,$\therefore \triangle DFC \sim \triangle AGD$,
$\therefore \frac{FC}{DG} = \frac{CD}{AD} = \frac{DF}{AG} = \frac{4}{5}$。
设$FC = 4x$,则$GD = 5x$,
$\therefore EB = FC = 4x$,
$\therefore AE = EG = AG = 4x - 4$,
$\therefore DF = \frac{4}{5}AG = \frac{16}{5}x - \frac{16}{5}$,
$\therefore EF = EG + GD + DF = 4x - 4 + 5x + \frac{16}{5}x - \frac{16}{5} = 17\frac{1}{5}$,
解得$x = 2$,
$\therefore EB = FC = 8$。
过点$F$作$FN // DM$交$BC$于点$N$。
$\therefore$四边形$DFNM$为平行四边形,$\therefore FN = DM$,
由
(2)可得,$BE \cdot CA = BC \cdot FN$,
$\therefore BE \cdot CA = BC \cdot DM$,$\therefore \frac{AC}{DM} = \frac{BC}{BE} = \frac{17\frac{1}{5}}{8} = \frac{43}{20}$。
(1)【解】如图,过点$M$作$MQ \perp CD$于点$Q$,过点$E$作$EP \perp BC$于点$P$。
则四边形$ABPE$,四边形$BCQM$是矩形,
$\therefore PE = AB = CD = 7$,$MQ = BC = AD = 10$。
易知,$\angle PEF = \angle QMN$。
$\because \angle EPF = \angle MQN = 90^{\circ}$,$\therefore \triangle EPF \sim \triangle MQN$,
$\therefore \frac{EF}{MN} = \frac{PE}{MQ}$,
$\therefore \frac{8}{MN} = \frac{7}{10}$,$\therefore MN = \frac{80}{7}$。
故答案为$\frac{80}{7}$。
(2)【证明】$\because \angle DOE = \angle COM$,$\angle DOE = \angle B$,
$\therefore \angle B = \angle COM$。
又$\because \angle MCO = \angle ECB$,$\therefore \triangle COM \sim \triangle CBE$,
$\therefore \frac{CO}{CM} = \frac{CB}{CE}$,$\angle DMC = \angle BEC$。
$\because$四边形$ABCD$是平行四边形,
$\therefore AB // CD$,$AB = CD$,$\therefore \angle DCO = \angle BEC$,
$\therefore \angle DMC = \angle DCO$。
又$\because \angle ODC = \angle CDM$,
$\therefore \triangle DOC \sim \triangle DCM$,$\therefore \frac{CO}{CM} = \frac{DC}{DM}$,$\therefore \frac{CB}{CE} = \frac{DC}{DM}$,
$\therefore CB \cdot DM = CE \cdot DC$,
$\therefore CB \cdot DM = CE \cdot AB$。
(3)【解】如图,过点$D$作$DE // BC$交$BA$的延长线于点$E$,过点$C$作$CF // AB$交$ED$的延长线于点$F$
$\therefore$四边形$BEFC$是平行四边形,
$\therefore BE = CF$,$BC = EF$,$\angle B = \angle ADC = \angle CFE = 120^{\circ}$,
$\therefore \angle E = 60^{\circ}$。
在$EF$上截取$EG = EA$,连接$AG$,则$\triangle EAG$为等边三角形,
$\therefore \angle AGD = 120^{\circ} = \angle CFE = \angle ADC$,
$\therefore \angle GAD + \angle GDA = \angle GDA + \angle FDC = 60^{\circ}$,
$\therefore \angle GAD = \angle FDC$,$\therefore \triangle DFC \sim \triangle AGD$,
$\therefore \frac{FC}{DG} = \frac{CD}{AD} = \frac{DF}{AG} = \frac{4}{5}$。
设$FC = 4x$,则$GD = 5x$,
$\therefore EB = FC = 4x$,
$\therefore AE = EG = AG = 4x - 4$,
$\therefore DF = \frac{4}{5}AG = \frac{16}{5}x - \frac{16}{5}$,
$\therefore EF = EG + GD + DF = 4x - 4 + 5x + \frac{16}{5}x - \frac{16}{5} = 17\frac{1}{5}$,
解得$x = 2$,
$\therefore EB = FC = 8$。
过点$F$作$FN // DM$交$BC$于点$N$。
$\therefore$四边形$DFNM$为平行四边形,$\therefore FN = DM$,
由
(2)可得,$BE \cdot CA = BC \cdot FN$,
$\therefore BE \cdot CA = BC \cdot DM$,$\therefore \frac{AC}{DM} = \frac{BC}{BE} = \frac{17\frac{1}{5}}{8} = \frac{43}{20}$。
查看更多完整答案,请扫码查看