第113页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
9. (湖北黄冈中学自主招生)如图,已知$A(12,0),B(8,6)$为平面直角坐标系内两点,以点B为圆心的$\odot B$经过原点O,$BC⊥x$轴于点C,点D为$\odot B$上一动点,E为AD的中点,则线段CE长度的最大值为______.

答案:
5 + $\sqrt{13}$ [解析]如图,取OC的中点M,连接DM,BD,BM,OB.
∵点B的坐标是(8,6),
∴MC = $\frac{1}{2}$ OC = $\frac{1}{2}$ ×8 = 4.
∵点A的坐标是(12,0),

∴AC = OA - OC = 12 - 8 = 4,
∴C是AM的中点.
∵E是AD的中点,
∴CE是△ADM的中位线,
∴CE = $\frac{1}{2}$ DM.
∵DM≤BD + BM,
∴CE≤ $\frac{1}{2}$ (BD + BM).
∵BC⊥OA,
∴∠BCM = 90°,
∴MB = $\sqrt{MC^{2}+BC^{2}}$ = $\sqrt{4^{2}+6^{2}}$ = 2$\sqrt{13}$,OB = $\sqrt{BC^{2}+OC^{2}}$ = $\sqrt{8^{2}+6^{2}}$ = 10,
∴BD = OB = 10,
∴CE≤ $\frac{1}{2}$ ×(10 + 2$\sqrt{13}$) = 5 + $\sqrt{13}$,
∴CE的最大值为5 + $\sqrt{13}$.
一题多解 如图,连接AB,BD,取AB的中点J,连接EJ,CJ.

∵AB = $\sqrt{BC^{2}+AC^{2}}$ = 2$\sqrt{13}$,
∴CJ = $\frac{1}{2}$ AB = $\sqrt{13}$.
∵AJ = JB,AE = ED,
∴EJ = $\frac{1}{2}$ BD = $\frac{1}{2}$ OB = $\frac{1}{2}$ $\sqrt{OC^{2}+BC^{2}}$ = 5,
∴CE≤JE + CJ = 5 + $\sqrt{13}$,
∴CE的最大值为5 + $\sqrt{13}$.
5 + $\sqrt{13}$ [解析]如图,取OC的中点M,连接DM,BD,BM,OB.
∵点B的坐标是(8,6),
∴MC = $\frac{1}{2}$ OC = $\frac{1}{2}$ ×8 = 4.
∵点A的坐标是(12,0),
∴AC = OA - OC = 12 - 8 = 4,
∴C是AM的中点.
∵E是AD的中点,
∴CE是△ADM的中位线,
∴CE = $\frac{1}{2}$ DM.
∵DM≤BD + BM,
∴CE≤ $\frac{1}{2}$ (BD + BM).
∵BC⊥OA,
∴∠BCM = 90°,
∴MB = $\sqrt{MC^{2}+BC^{2}}$ = $\sqrt{4^{2}+6^{2}}$ = 2$\sqrt{13}$,OB = $\sqrt{BC^{2}+OC^{2}}$ = $\sqrt{8^{2}+6^{2}}$ = 10,
∴BD = OB = 10,
∴CE≤ $\frac{1}{2}$ ×(10 + 2$\sqrt{13}$) = 5 + $\sqrt{13}$,
∴CE的最大值为5 + $\sqrt{13}$.
一题多解 如图,连接AB,BD,取AB的中点J,连接EJ,CJ.
∵AB = $\sqrt{BC^{2}+AC^{2}}$ = 2$\sqrt{13}$,
∴CJ = $\frac{1}{2}$ AB = $\sqrt{13}$.
∵AJ = JB,AE = ED,
∴EJ = $\frac{1}{2}$ BD = $\frac{1}{2}$ OB = $\frac{1}{2}$ $\sqrt{OC^{2}+BC^{2}}$ = 5,
∴CE≤JE + CJ = 5 + $\sqrt{13}$,
∴CE的最大值为5 + $\sqrt{13}$.
10. 如图,在平面直角坐标系中,A,B,C是$\odot M$上的三个点,$A(0,4),B(4,4),C(6,2)$.
(1)圆心M的坐标为______;
(2)判断点$D(4,-3)与\odot M$的位置关系.

(1)圆心M的坐标为______;
(2)判断点$D(4,-3)与\odot M$的位置关系.
答案:
(1)(2,0)
(2)如图,

圆的半径AM = $\sqrt{2^{2}+4^{2}}$ = 2$\sqrt{5}$,MD = $\sqrt{(4 - 2)^{2}+3^{2}}$ = $\sqrt{13}$<2$\sqrt{5}$,所以点D在⊙M内.
(1)(2,0)
(2)如图,
圆的半径AM = $\sqrt{2^{2}+4^{2}}$ = 2$\sqrt{5}$,MD = $\sqrt{(4 - 2)^{2}+3^{2}}$ = $\sqrt{13}$<2$\sqrt{5}$,所以点D在⊙M内.
11. (2024·江苏南京建邺区期中)如图,在$\triangle ABC$中,$AB= AC,\odot O是\triangle ABC$的外接圆,过点O作AC的垂线,垂足为D,分别交CB的延长线,$\overset{\frown }{AC}$于点E,F,$AF$,BC的延长线交于点G.
(1)求证:$AC= CG$;
(2)若$EB= CG$,求$∠BAC$的度数.

(1)求证:$AC= CG$;
(2)若$EB= CG$,求$∠BAC$的度数.
答案:
(1)如图,连接CF.
∵过点O作AC的垂线,垂足为D,
∴ $\overarc{AF}$ = $\overarc{CF}$,
∴∠FAC = ∠ACF.
∵AB = AC,
∴∠ABC = ∠ACB.
∵∠ABC + ∠AFC = 180°,∠GFC + ∠AFC = 180°,
∴∠GFC = ∠ABC,
∴∠GFC = ∠ACB.
∵∠G = ∠ACB - ∠FAC,∠ACF = ∠GFC - ∠FAC,
∴∠ACF = ∠G,
∴∠CAF = ∠G,
∴AC = CG.

(2)如图,连接AE,过点A作AH⊥BC于点H.
∵AB = AC,
∴BH = CH, $\overarc{AB}$ = $\overarc{AC}$,
∴AH过点O.
∵BE = CG,
∴EH = GH,
∴AE = AG,AB = BE = AC = CG,
∴∠AEB = ∠BAE = ∠G = ∠CAG.
∵EF⊥AC,AD = CD,
∴AE = EC,
∴∠AED = ∠CED.设∠AED = ∠CED = α,
∴∠ACB = ∠ABC = ∠AEB + ∠BAE = 4α.
∵∠CDE = 90°,
∴α + 4α = 90°,
∴α = 18°,
∴∠ABC = ∠ACB = 72°,
∴∠BAC = 180° - ∠ABC - ∠ACB = 36°.
(1)如图,连接CF.
∵过点O作AC的垂线,垂足为D,
∴ $\overarc{AF}$ = $\overarc{CF}$,
∴∠FAC = ∠ACF.
∵AB = AC,
∴∠ABC = ∠ACB.
∵∠ABC + ∠AFC = 180°,∠GFC + ∠AFC = 180°,
∴∠GFC = ∠ABC,
∴∠GFC = ∠ACB.
∵∠G = ∠ACB - ∠FAC,∠ACF = ∠GFC - ∠FAC,
∴∠ACF = ∠G,
∴∠CAF = ∠G,
∴AC = CG.
(2)如图,连接AE,过点A作AH⊥BC于点H.
∵AB = AC,
∴BH = CH, $\overarc{AB}$ = $\overarc{AC}$,
∴AH过点O.
∵BE = CG,
∴EH = GH,
∴AE = AG,AB = BE = AC = CG,
∴∠AEB = ∠BAE = ∠G = ∠CAG.
∵EF⊥AC,AD = CD,
∴AE = EC,
∴∠AED = ∠CED.设∠AED = ∠CED = α,
∴∠ACB = ∠ABC = ∠AEB + ∠BAE = 4α.
∵∠CDE = 90°,
∴α + 4α = 90°,
∴α = 18°,
∴∠ABC = ∠ACB = 72°,
∴∠BAC = 180° - ∠ABC - ∠ACB = 36°.
12. (2025·湖北武汉江夏区期中)如图,$\triangle ABC是\odot O$的内接三角形,点D是$\overset{\frown }{AB}$的中点,连接AD,BD,CD.
(1)如图(1),若$∠ACD= 30^{\circ }$,求$∠ADB$的度数;
(2)如图(2),若$AB= AC= 10,AD= \frac {5\sqrt {5}}{2}$,求BC的长.

(1)如图(1),若$∠ACD= 30^{\circ }$,求$∠ADB$的度数;
(2)如图(2),若$AB= AC= 10,AD= \frac {5\sqrt {5}}{2}$,求BC的长.
答案:
(1)
∵点D是 $\overarc{AB}$ 的中点,
∴ $\overarc{BD}$ = $\overarc{AD}$,
∴∠ACD = ∠BCD = 30°,
∴∠ACB = 60°,
∴∠ADB = 180° - ∠ACB = 120°.
(2)如图,连接AO并延长交BC于点E,连接OD交AB于点H.
∵AB = AC,
∴ $\overarc{AB}$ = $\overarc{AC}$,
∴AE⊥BC,
∴BE = CE.
∵点D是 $\overarc{AB}$ 的中点,

∴OD⊥AB,AH = $\frac{1}{2}$ AB = 5,
∴DH = $\sqrt{AD^{2}-AH^{2}}$ = $\sqrt{(\frac{5\sqrt{5}}{2})^{2}-5^{2}}$ = $\frac{5}{2}$.
利用勾股定理求三角形直角边
在Rt△AOH中,OA² = AH² + OH²,
∴OA² = 5² + (OA - $\frac{5}{2}$)²,解得OA = OB = $\frac{25}{4}$.
∵OB² - OE² = BE² = AB² - AE²,
∴($\frac{25}{4}$)² - OE² = 10² - ($\frac{25}{4}$ + OE)²,解得OE = $\frac{7}{4}$,
∴BE = $\sqrt{OB^{2}-OE^{2}}$ = $\sqrt{(\frac{25}{4})^{2}-(\frac{7}{4})^{2}}$ = 6,
∴BC = 2BE = 12.
(1)
∵点D是 $\overarc{AB}$ 的中点,
∴ $\overarc{BD}$ = $\overarc{AD}$,
∴∠ACD = ∠BCD = 30°,
∴∠ACB = 60°,
∴∠ADB = 180° - ∠ACB = 120°.
(2)如图,连接AO并延长交BC于点E,连接OD交AB于点H.
∵AB = AC,
∴ $\overarc{AB}$ = $\overarc{AC}$,
∴AE⊥BC,
∴BE = CE.
∵点D是 $\overarc{AB}$ 的中点,
∴OD⊥AB,AH = $\frac{1}{2}$ AB = 5,
∴DH = $\sqrt{AD^{2}-AH^{2}}$ = $\sqrt{(\frac{5\sqrt{5}}{2})^{2}-5^{2}}$ = $\frac{5}{2}$.
利用勾股定理求三角形直角边
在Rt△AOH中,OA² = AH² + OH²,
∴OA² = 5² + (OA - $\frac{5}{2}$)²,解得OA = OB = $\frac{25}{4}$.
∵OB² - OE² = BE² = AB² - AE²,
∴($\frac{25}{4}$)² - OE² = 10² - ($\frac{25}{4}$ + OE)²,解得OE = $\frac{7}{4}$,
∴BE = $\sqrt{OB^{2}-OE^{2}}$ = $\sqrt{(\frac{25}{4})^{2}-(\frac{7}{4})^{2}}$ = 6,
∴BC = 2BE = 12.
13. (2024·广州中考)如图,$\odot O$中,弦AB的长为$4\sqrt {3}$,点C在$\odot O$上,$OC⊥AB,∠ABC= 30^{\circ }.\odot O$所在的平面内有一点P,若$OP= 5$,则点P与$\odot O$的位置关系是(

A. 点P在$\odot O$上
B. 点P在$\odot O$内
C. 点P在$\odot O$外
D. 无法确定
C
).A. 点P在$\odot O$上
B. 点P在$\odot O$内
C. 点P在$\odot O$外
D. 无法确定
答案:
C [解析]设AB与OC交于点D.
∵弦AB的长为4$\sqrt{3}$,OC⊥AB,
∴AD = BD = $\frac{1}{2}$ AB = 2$\sqrt{3}$,∠ADO = 90°.
∵∠ABC = 30°,
∴∠AOD = 2∠ABC = 60°,
∴∠A = 90° - 60° = 30°,
∴OA = 2OD.
设OD = x,则OA = 2x,
在Rt△AOD中,OD² + AD² = OA²,
即x² + (2$\sqrt{3}$)² = (2x)²,
解得x = 2(负值已舍去),
∴OA = 2x = 4.
∵OP = 5,
∴OP>OA,
∴点P在⊙O外.故选C.
∵弦AB的长为4$\sqrt{3}$,OC⊥AB,
∴AD = BD = $\frac{1}{2}$ AB = 2$\sqrt{3}$,∠ADO = 90°.
∵∠ABC = 30°,
∴∠AOD = 2∠ABC = 60°,
∴∠A = 90° - 60° = 30°,
∴OA = 2OD.
设OD = x,则OA = 2x,
在Rt△AOD中,OD² + AD² = OA²,
即x² + (2$\sqrt{3}$)² = (2x)²,
解得x = 2(负值已舍去),
∴OA = 2x = 4.
∵OP = 5,
∴OP>OA,
∴点P在⊙O外.故选C.
查看更多完整答案,请扫码查看