2025年创新设计高考总复习数学浙江专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年创新设计高考总复习数学浙江专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第94页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
考点三 角的变换问题
例 3 (1)(2020·全国 III 卷)已知 $ \sin \theta + \sin(\theta + \frac{\pi}{3}) = 1 $,则 $ \sin(\theta + \frac{\pi}{6}) = $(
A.$ \frac{1}{2} $
B.$ \frac{\sqrt{3}}{3} $
C.$ \frac{2}{3} $
D.$ \frac{\sqrt{2}}{2} $
例 3 (1)(2020·全国 III 卷)已知 $ \sin \theta + \sin(\theta + \frac{\pi}{3}) = 1 $,则 $ \sin(\theta + \frac{\pi}{6}) = $(
B
)A.$ \frac{1}{2} $
B.$ \frac{\sqrt{3}}{3} $
C.$ \frac{2}{3} $
D.$ \frac{\sqrt{2}}{2} $
答案:
例3
(1)B[
(1)因为$\sin \theta + \sin(\theta + \frac{\pi}{3})= \sin(\theta + \frac{\pi}{6} - \frac{\pi}{6}) + \sin(\theta + \frac{\pi}{6} + \frac{\pi}{6})= \sin(\theta + \frac{\pi}{6}) \cos \frac{\pi}{6} - \cos(\theta + \frac{\pi}{6}) \sin \frac{\pi}{6} + \sin(\theta + \frac{\pi}{6}) \cos \frac{\pi}{6} + \cos(\theta + \frac{\pi}{6}) \sin \frac{\pi}{6}= 2\sin(\theta + \frac{\pi}{6}) \cos \frac{\pi}{6} = \sqrt{3} \sin(\theta + \frac{\pi}{6}) = 1,$所以$\sin(\theta + \frac{\pi}{6}) = \frac{\sqrt{3}}{3}.]$
(1)B[
(1)因为$\sin \theta + \sin(\theta + \frac{\pi}{3})= \sin(\theta + \frac{\pi}{6} - \frac{\pi}{6}) + \sin(\theta + \frac{\pi}{6} + \frac{\pi}{6})= \sin(\theta + \frac{\pi}{6}) \cos \frac{\pi}{6} - \cos(\theta + \frac{\pi}{6}) \sin \frac{\pi}{6} + \sin(\theta + \frac{\pi}{6}) \cos \frac{\pi}{6} + \cos(\theta + \frac{\pi}{6}) \sin \frac{\pi}{6}= 2\sin(\theta + \frac{\pi}{6}) \cos \frac{\pi}{6} = \sqrt{3} \sin(\theta + \frac{\pi}{6}) = 1,$所以$\sin(\theta + \frac{\pi}{6}) = \frac{\sqrt{3}}{3}.]$
(2)(2025·浙江名校联考)已知 $ \alpha \in (\frac{\pi}{2}, \pi) $,$ \beta \in (0, \frac{\pi}{2}) $,若 $ \sin(\alpha + \beta) = \frac{1}{3} $,$ \cos \beta = \frac{\sqrt{3}}{3} $,则 $ \cos 2\alpha = $(
A.$ \frac{1}{3} $
B.$ -\frac{1}{3} $
C.$ \frac{23}{27} $
D.$ -\frac{23}{27}$$$
D
)A.$ \frac{1}{3} $
B.$ -\frac{1}{3} $
C.$ \frac{23}{27} $
D.$ -\frac{23}{27}$$$
答案:
例3
(2)D[
(2)由于$\alpha \in (\frac{\pi}{2}, \pi), \beta \in (0, \frac{\pi}{2}),$则$\alpha + \beta \in (\frac{\pi}{2}, \frac{3\pi}{2}),$而$\sin(\alpha + \beta) = \frac{1}{3},$故$\alpha + \beta \in (\frac{\pi}{2}, \pi),$所以$\cos(\alpha + \beta) = - \sqrt{1 - \sin^{2}(\alpha + \beta)} = - \frac{2\sqrt{2}}{3}.$由$\cos \beta = \frac{\sqrt{3}}{3}, \beta \in (0, \frac{\pi}{2}),$可得$\sin \beta = \frac{\sqrt{6}}{3}$则$\cos \alpha = \cos[(\alpha + \beta) - \beta]= \cos(\alpha + \beta) \cos \beta + \sin(\alpha + \beta) \sin \beta= \frac{2\sqrt{2}}{3} × \frac{\sqrt{3}}{3} + \frac{1}{3} × \frac{\sqrt{6}}{3} = \frac{\sqrt{6}}{9}$故$\cos 2\alpha = 2\cos^{2} \alpha - 1= 2 × (\frac{\sqrt{6}}{9})^{2} - 1 = - \frac{23}{27}.]$
(2)D[
(2)由于$\alpha \in (\frac{\pi}{2}, \pi), \beta \in (0, \frac{\pi}{2}),$则$\alpha + \beta \in (\frac{\pi}{2}, \frac{3\pi}{2}),$而$\sin(\alpha + \beta) = \frac{1}{3},$故$\alpha + \beta \in (\frac{\pi}{2}, \pi),$所以$\cos(\alpha + \beta) = - \sqrt{1 - \sin^{2}(\alpha + \beta)} = - \frac{2\sqrt{2}}{3}.$由$\cos \beta = \frac{\sqrt{3}}{3}, \beta \in (0, \frac{\pi}{2}),$可得$\sin \beta = \frac{\sqrt{6}}{3}$则$\cos \alpha = \cos[(\alpha + \beta) - \beta]= \cos(\alpha + \beta) \cos \beta + \sin(\alpha + \beta) \sin \beta= \frac{2\sqrt{2}}{3} × \frac{\sqrt{3}}{3} + \frac{1}{3} × \frac{\sqrt{6}}{3} = \frac{\sqrt{6}}{9}$故$\cos 2\alpha = 2\cos^{2} \alpha - 1= 2 × (\frac{\sqrt{6}}{9})^{2} - 1 = - \frac{23}{27}.]$
训练 3 (1)(2025·沈阳模拟)已知 $ \alpha \in (-\frac{\pi}{2}, 0) $ 且 $ \tan(\frac{\pi}{4} - \alpha) = 3\cos 2\alpha $,则 $ \sin 2\alpha = $
- \frac{2}{3}
.
答案:
训练$3(1)- \frac{2}{3}(2)6[(1)$由$\tan(\frac{\pi}{4} - \alpha) =3\cos 2\alpha,\frac{\sin(\frac{\pi}{4} - \alpha)}{\cos(\frac{\pi}{4} - \alpha)} = 3\cos 2\alpha = 3\sin(\frac{\pi}{2} - 2\alpha),$即$\frac{\sin(\frac{\pi}{4} - \alpha)}{\cos(\frac{\pi}{4} - \alpha)} = 6\sin(\frac{\pi}{4} - \alpha) \cos(\frac{\pi}{4} - \alpha),$由于$\alpha \in (-\frac{\pi}{2}, 0),$故$\frac{\pi}{4} - \alpha \in (\frac{\pi}{4}, \frac{3\pi}{4}),$则$\sin(\frac{\pi}{4} - \alpha) \neq 0,$故$\frac{1}{\cos(\frac{\pi}{4} - \alpha)} = 6\cos(\frac{\pi}{4} - \alpha),$即$2\cos^{2}(\frac{\pi}{4} - \alpha) = \frac{1}{3}$则$1 + \cos(\frac{\pi}{2} - 2\alpha) = \frac{1}{3}$即$1 + \sin 2\alpha = \frac{1}{3},$即$\sin 2\alpha = - \frac{2}{3}.(2)$因为$\tan \frac{\alpha}{2} = 1 - \tan^{2} \frac{\alpha}{2},$所以$\tan \alpha = \frac{2\tan \frac{\alpha}{2}}{1 - \tan^{2} \frac{\alpha}{2}} = 2.$又$\sin[(\alpha + \beta) + \alpha] = 2\sin[(\alpha + \beta) - \alpha],$所以$\sin(\alpha + \beta) \cos \alpha + \cos(\alpha + \beta) \sin \alpha= 2\sin(\alpha + \beta) \cos \alpha - 2\cos(\alpha + \beta) \sin \alpha,$即$\sin(\alpha + \beta) \cos \alpha - \cos(\alpha + \beta) \sin \alpha= \sin(\alpha + \beta - \alpha) = 0,$等号两边同时除以$\cos \alpha \cos(\alpha + \beta),$得$\tan(\alpha + \beta) = 3\tan \alpha = 6.]$
(2)(2025·河南名校联考)已知 $ \sin(2\alpha + \beta) = 2\sin \beta $,且 $ \tan \frac{\alpha}{2} = 1 - \tan^2 \frac{\alpha}{2} $,则 $ \tan(\alpha + \beta) = $____.
答案:
训练3
(2)6[
(2)因为$\tan \frac{\alpha}{2} = 1 - \tan^{2} \frac{\alpha}{2},$所以$\tan \alpha = \frac{2\tan \frac{\alpha}{2}}{1 - \tan^{2} \frac{\alpha}{2}} = 2.$又$\sin[(\alpha + \beta) + \alpha] = 2\sin[(\alpha + \beta) - \alpha],$所以$\sin(\alpha + \beta) \cos \alpha + \cos(\alpha + \beta) \sin \alpha= 2\sin(\alpha + \beta) \cos \alpha - 2\cos(\alpha + \beta) \sin \alpha,$即$\sin(\alpha + \beta) \cos \alpha - \cos(\alpha + \beta) \sin \alpha= \sin(\alpha + \beta - \alpha) = 0,$等号两边同时除以$\cos \alpha \cos(\alpha + \beta),$得$\tan(\alpha + \beta) = 3\tan \alpha = 6.]$
(2)6[
(2)因为$\tan \frac{\alpha}{2} = 1 - \tan^{2} \frac{\alpha}{2},$所以$\tan \alpha = \frac{2\tan \frac{\alpha}{2}}{1 - \tan^{2} \frac{\alpha}{2}} = 2.$又$\sin[(\alpha + \beta) + \alpha] = 2\sin[(\alpha + \beta) - \alpha],$所以$\sin(\alpha + \beta) \cos \alpha + \cos(\alpha + \beta) \sin \alpha= 2\sin(\alpha + \beta) \cos \alpha - 2\cos(\alpha + \beta) \sin \alpha,$即$\sin(\alpha + \beta) \cos \alpha - \cos(\alpha + \beta) \sin \alpha= \sin(\alpha + \beta - \alpha) = 0,$等号两边同时除以$\cos \alpha \cos(\alpha + \beta),$得$\tan(\alpha + \beta) = 3\tan \alpha = 6.]$
典例
已知$\alpha ,\beta \in (0,\pi )$,$\tan \dfrac{\alpha }{2}=\dfrac{1}{2}$,$\sin (\alpha -\beta )=\dfrac{5}{13}$,则$\cos \beta =$______.
已知$\alpha ,\beta \in (0,\pi )$,$\tan \dfrac{\alpha }{2}=\dfrac{1}{2}$,$\sin (\alpha -\beta )=\dfrac{5}{13}$,则$\cos \beta =$______.
答案:
典例 $\frac{56}{65}$ $\because \left[\because \tan \frac{\alpha}{2}=\frac{1}{2}\right.$ $\therefore \sin \alpha=\frac{2\tan\frac{\alpha}{2}}{1+\tan^{2}\frac{\alpha}{2}}=\frac{2 × \frac{1}{2}}{1+(\frac{1}{2})^{2}}=\frac{4}{5}$ $\cos \alpha=\frac{1-\tan^{2}\frac{\alpha}{2}}{1+\tan^{2}\frac{\alpha}{2}}=\frac{1-(\frac{1}{2})^{2}}{1+(\frac{1}{2})^{2}}=\frac{3}{5}$ $\because \alpha,\beta \in (0,\pi),\cos \alpha>0,\therefore \alpha \in \left(0,\frac{\pi}{2}\right)$, $\therefore \alpha-\beta \in \left(-\pi,\frac{\pi}{2}\right)$, $\because \sin (\alpha-\beta)=\frac{5}{13}>0,\therefore \alpha-\beta \in \left(0,\frac{\pi}{2}\right)$, $\therefore \cos (\alpha-\beta)=\frac{12}{13}$, $\therefore \cos \beta=\cos \left[-\beta\right]=\cos \left[(\alpha-\beta)-\alpha\right]$ $=\cos (\alpha-\beta)\cos \alpha+\sin (\alpha-\beta)\sin \alpha$ $=\frac{12}{13} × \frac{3}{5}+\frac{5}{13} × \frac{4}{5}=\frac{56}{65}$.
训练
(2024·济宁质检)已知$6\sin ^{2}\alpha +\sin \alpha \cos \alpha -2\cos ^{2}\alpha =0$,$\alpha \in \left(\dfrac{\pi }{2},\pi \right)$,则$\tan \alpha =$______,$\sin \left(2\alpha +\dfrac{\pi }{3}\right)=$______.
(2024·济宁质检)已知$6\sin ^{2}\alpha +\sin \alpha \cos \alpha -2\cos ^{2}\alpha =0$,$\alpha \in \left(\dfrac{\pi }{2},\pi \right)$,则$\tan \alpha =$______,$\sin \left(2\alpha +\dfrac{\pi }{3}\right)=$______.
答案:
训练 $\frac{2}{3}-\frac{5\sqrt{3}-12}{26}$ $\left[\because 6\sin^{2}\alpha+\sin \alpha \cos \alpha-2\cos^{2}\alpha=\frac{6\sin^{2}\alpha+\sin \alpha \cos \alpha-2\cos^{2}\alpha}{\sin^{2}\alpha+\cos^{2}\alpha}\right.$ $=\frac{6\tan^{2}\alpha+\tan \alpha-2}{\tan^{2}\alpha+1}=0$, 即 $6\tan^{2}\alpha+\tan \alpha-2=0$, 解得 $\tan \alpha=-\frac{2}{3}$ 或 $\tan \alpha=\frac{1}{2}$, $\because \alpha \in \left(\frac{\pi}{2},\pi\right)$, $\therefore \tan \alpha=-\frac{2}{3}$. $\because \sin 2\alpha=\frac{2\tan \alpha}{1+\tan^{2}\alpha}=\frac{12}{13}$, $\cos 2\alpha=\frac{1-\tan^{2}\alpha}{1+\tan^{2}\alpha}=\frac{5}{13}$, $\therefore \sin \left(2\alpha+\frac{\pi}{3}\right)=\sin 2\alpha \cos \frac{\pi}{3}+\cos 2\alpha \sin \frac{\pi}{3}$ $=-\frac{12}{13} × \frac{1}{2}+\frac{5}{13} × \frac{\sqrt{3}}{2}=\frac{5\sqrt{3}-12}{26}$.
查看更多完整答案,请扫码查看