2025年创新设计高考总复习数学浙江专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年创新设计高考总复习数学浙江专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第211页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
角度 3 一般弦
例 4 (2025·杭州调研)已知顶点在原点,关于$y$轴对称的抛物线与直线$x - 2y = 1$交于$P$,$Q$两点,若$\vert PQ\vert=\sqrt{15}$,则抛物线的方程为 (
A.$x^{2}=-4y$
B.$x^{2}=12y$
C.$x^{2}=-4y$或$x^{2}=12y$
D.以上都不是
例 4 (2025·杭州调研)已知顶点在原点,关于$y$轴对称的抛物线与直线$x - 2y = 1$交于$P$,$Q$两点,若$\vert PQ\vert=\sqrt{15}$,则抛物线的方程为 (
C
)A.$x^{2}=-4y$
B.$x^{2}=12y$
C.$x^{2}=-4y$或$x^{2}=12y$
D.以上都不是
答案:
例4 C[设抛物线的方程为$x^{2} = 2ay$,则抛物线与直线$x - 2y = 1$联立消去$y$,得$x^{2} - ax + a = 0$,所以$x_{1} + x_{2} = a$,$x_{1}x_{2} = a$,则$\left|x_{1} - x_{2}\right| = \sqrt{(x_{1} + x_{2})^{2} - 4x_{1}x_{2}} = \sqrt{a^{2} - 4a}$,所以$\left|PQ\right| = \sqrt{1 + k^{2}}\left|x_{1} - x_{2}\right|=\sqrt{1 + \frac{1}{4}} \cdot \sqrt{a^{2} - 4a} = \sqrt{15}$,所以$a^{2} - 4a - 12 = 0$,解得$a = -2$或$a = 6$,所以$x^{2} = -4y$或$x^{2} = 12y$.]
(1)已知斜率为$2$的直线经过椭圆$\frac{x^{2}}{5}+\frac{y^{2}}{4}=1$的右焦点$F$,且与椭圆相交于$A$,$B$两点,则弦$AB$的长为
$\frac{5\sqrt{5}}{3}$
.
答案:
(1)$\frac{5\sqrt{5}}{3}$ [
(1)由题意,知椭圆的右焦点$F$的坐标为$(1,0)$,直线$AB$的方程为$y = 2(x - 1)$. 由$\begin{cases}y = 2(x - 1)\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1\end{cases}$消去$y$,得$3x^{2} - 5x = 0$, 设$A(x_{1},y_{1})$,$B(x_{2},y_{2})$,则$x_{1} + x_{2} = \frac{5}{3}$,$x_{1}x_{2} = 0$, 则$\left|AB\right| = \sqrt{(1 + k^{2})[(x_{1} + x_{2})^{2} - 4x_{1}x_{2}]}=\sqrt{(1 + 2^{2}) × [(\frac{5}{3})^{2} - 4 × 0]} = \frac{5\sqrt{5}}{3}$.]
(1)$\frac{5\sqrt{5}}{3}$ [
(1)由题意,知椭圆的右焦点$F$的坐标为$(1,0)$,直线$AB$的方程为$y = 2(x - 1)$. 由$\begin{cases}y = 2(x - 1)\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1\end{cases}$消去$y$,得$3x^{2} - 5x = 0$, 设$A(x_{1},y_{1})$,$B(x_{2},y_{2})$,则$x_{1} + x_{2} = \frac{5}{3}$,$x_{1}x_{2} = 0$, 则$\left|AB\right| = \sqrt{(1 + k^{2})[(x_{1} + x_{2})^{2} - 4x_{1}x_{2}]}=\sqrt{(1 + 2^{2}) × [(\frac{5}{3})^{2} - 4 × 0]} = \frac{5\sqrt{5}}{3}$.]
(2)已知抛物线$C:y^{2}=2px(p>0)$的焦点到准线的距离为$1$,若抛物线$C$上存在关于直线$l:x - y - 2 = 0$对称的不同的两点$P$和$Q$,则线段$PQ$的中点坐标为
(1,-1)
.
答案:
(2)$(1,-1)$ [
(2)
∵焦点到准线的距离为$p$,则$p = 1$,
∴$y^{2} = 2x$.设点$P(x_{1},y_{1})$,$Q(x_{2},y_{2})$, 则$\begin{cases}y_{1}^{2} = 2x_{1}\\y_{2}^{2} = 2x_{2}\end{cases}$,则$(y_{1} - y_{2})(y_{1} + y_{2}) = 2(x_{1} - x_{2})$,
∴$k_{PQ} = \frac{2}{y_{1} + y_{2}}$ 又
∵$P$,$Q$关于直线$l$对称,
∴$k_{PQ} = -1$,即$y_{1} + y_{2} = -2$,
∴$PQ$中点的纵坐标为$\frac{y_{1} + y_{2}}{2} = -1$, 又
∵$PQ$的中点在直线$l$上,
∴$PQ$中点的横坐标为$\frac{x_{1} + x_{2}}{2} = (-1) + 2 = 1$.
∴线段$PQ$的中点坐标为$(1,-1)$.]
(2)$(1,-1)$ [
(2)
∵焦点到准线的距离为$p$,则$p = 1$,
∴$y^{2} = 2x$.设点$P(x_{1},y_{1})$,$Q(x_{2},y_{2})$, 则$\begin{cases}y_{1}^{2} = 2x_{1}\\y_{2}^{2} = 2x_{2}\end{cases}$,则$(y_{1} - y_{2})(y_{1} + y_{2}) = 2(x_{1} - x_{2})$,
∴$k_{PQ} = \frac{2}{y_{1} + y_{2}}$ 又
∵$P$,$Q$关于直线$l$对称,
∴$k_{PQ} = -1$,即$y_{1} + y_{2} = -2$,
∴$PQ$中点的纵坐标为$\frac{y_{1} + y_{2}}{2} = -1$, 又
∵$PQ$的中点在直线$l$上,
∴$PQ$中点的横坐标为$\frac{x_{1} + x_{2}}{2} = (-1) + 2 = 1$.
∴线段$PQ$的中点坐标为$(1,-1)$.]
考点三 直线与圆锥曲线的综合
例 5 (2025·昆明质检)已知双曲线$C:\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1(a>0,b>0)$的两个焦点分别为$F_{1}(-2,0)$,$F_{2}(2,0)$,点$P(5,\sqrt{23})$在双曲线$C$上.
(1)求双曲线$C$的方程;
(2)记$O$为坐标原点,过点$Q(0,2)$的直线$l$与双曲线$C$交于不同的两点$A$,$B$,若$\triangle OAB$的面积为$2\sqrt{2}$,求直线$l$的方程.
例 5 (2025·昆明质检)已知双曲线$C:\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1(a>0,b>0)$的两个焦点分别为$F_{1}(-2,0)$,$F_{2}(2,0)$,点$P(5,\sqrt{23})$在双曲线$C$上.
(1)求双曲线$C$的方程;
解 (1)依题意,$c = 2$,所以$a^{2} + b^{2} = 4$,则双曲线$C$的方程为$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{4 - a^{2}} = 1(0 < a^{2} < 4)$,将点$P(5,\sqrt{23})$代入上式,得$\frac{25}{a^{2}} - \frac{23}{4 - a^{2}} = 1$,解得$a^{2} = 50$(舍去)或$a^{2} = 2$,故所求双曲线的方程为$\frac{x^{2}}{2} - \frac{y^{2}}{2} = 1$.
(2)依题意,可设直线$l$的方程为$y = kx + 2$,代入双曲线$C$的方程并整理,得$(1 - k^{2})x^{2} - 4kx - 6 = 0$.
(2)记$O$为坐标原点,过点$Q(0,2)$的直线$l$与双曲线$C$交于不同的两点$A$,$B$,若$\triangle OAB$的面积为$2\sqrt{2}$,求直线$l$的方程.
因为直线$l$与双曲线$C$交于不同的两点$A$,$B$,所以$\begin{cases}1 - k^{2} \neq 0\\\Delta = (-4k)^{2} + 24(1 - k^{2}) > 0\end{cases}$,解得$-\sqrt{3} < k < \sqrt{3}$且$k \neq \pm 1$.
设$A(x_{1},y_{1})$,$B(x_{2},y_{2})$,则$x_{1} + x_{2} = \frac{4k}{1 - k^{2}}$,$x_{1}x_{2} = -\frac{6}{1 - k^{2}}$,
所以$\left|AB\right| = \sqrt{1 + k^{2}} \cdot \sqrt{(x_{1} + x_{2})^{2} - 4x_{1}x_{2}}=\sqrt{1 + k^{2}} \cdot \sqrt{(\frac{4k}{1 - k^{2}})^{2} + \frac{24}{1 - k^{2}}}$
又原点$O$到直线$l$的距离$d = \frac{2}{\sqrt{1 + k^{2}}}$,
所以$S_{\triangle OAB} = \frac{1}{2}d \cdot \left|AB\right| = \frac{1}{2} × \frac{2}{\sqrt{1 + k^{2}}} × \sqrt{1 + k^{2}} \cdot \sqrt{(\frac{4k}{1 - k^{2}})^{2} + \frac{24}{1 - k^{2}}}$
又$S_{\triangle OAB} = 2\sqrt{2}$,即$\frac{\sqrt{3 - k^{2}}}{\left|1 - k^{2}\right|} = 1$,所以$k^{4} - k^{2} - 2 = 0$,解得$k = \pm \sqrt{2}$,满足条件.
故满足条件的直线$l$有两条,其方程分别为$y = \sqrt{2}x + 2$和$y = -\sqrt{2}x + 2$.
答案:
例5 解
(1)依题意,$c = 2$,所以$a^{2} + b^{2} = 4$,则双曲线$C$的方程为$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{4 - a^{2}} = 1(0 < a^{2} < 4)$,将点$P(5,\sqrt{23})$代入上式,得$\frac{25}{a^{2}} - \frac{23}{4 - a^{2}} = 1$,解得$a^{2} = 50$(舍去)或$a^{2} = 2$,故所求双曲线的方程为$\frac{x^{2}}{2} - \frac{y^{2}}{2} = 1$.
(2)依题意,可设直线$l$的方程为$y = kx + 2$,代入双曲线$C$的方程并整理,得$(1 - k^{2})x^{2} - 4kx - 6 = 0$. 因为直线$l$与双曲线$C$交于不同的两点$A$,$B$,所以$\begin{cases}1 - k^{2} \neq 0\\\Delta = (-4k)^{2} + 24(1 - k^{2}) > 0\end{cases}$,解得$-\sqrt{3} < k < \sqrt{3}$且$k \neq \pm 1$. 设$A(x_{1},y_{1})$,$B(x_{2},y_{2})$,则$x_{1} + x_{2} = \frac{4k}{1 - k^{2}}$,$x_{1}x_{2} = -\frac{6}{1 - k^{2}}$, 所以$\left|AB\right| = \sqrt{1 + k^{2}} \cdot \sqrt{(x_{1} + x_{2})^{2} - 4x_{1}x_{2}}=\sqrt{1 + k^{2}} \cdot \sqrt{(\frac{4k}{1 - k^{2}})^{2} + \frac{24}{1 - k^{2}}}$ 又原点$O$到直线$l$的距离$d = \frac{2}{\sqrt{1 + k^{2}}}$, 所以$S_{\triangle OAB} = \frac{1}{2}d \cdot \left|AB\right| = \frac{1}{2} × \frac{2}{\sqrt{1 + k^{2}}} × \sqrt{1 + k^{2}} \cdot \sqrt{(\frac{4k}{1 - k^{2}})^{2} + \frac{24}{1 - k^{2}}}$ 又$S_{\triangle OAB} = 2\sqrt{2}$,即$\frac{\sqrt{3 - k^{2}}}{\left|1 - k^{2}\right|} = 1$,所以$k^{4} - k^{2} - 2 = 0$,解得$k = \pm \sqrt{2}$,满足条件. 故满足条件的直线$l$有两条,其方程分别为$y = \sqrt{2}x + 2$和$y = -\sqrt{2}x + 2$.
(1)依题意,$c = 2$,所以$a^{2} + b^{2} = 4$,则双曲线$C$的方程为$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{4 - a^{2}} = 1(0 < a^{2} < 4)$,将点$P(5,\sqrt{23})$代入上式,得$\frac{25}{a^{2}} - \frac{23}{4 - a^{2}} = 1$,解得$a^{2} = 50$(舍去)或$a^{2} = 2$,故所求双曲线的方程为$\frac{x^{2}}{2} - \frac{y^{2}}{2} = 1$.
(2)依题意,可设直线$l$的方程为$y = kx + 2$,代入双曲线$C$的方程并整理,得$(1 - k^{2})x^{2} - 4kx - 6 = 0$. 因为直线$l$与双曲线$C$交于不同的两点$A$,$B$,所以$\begin{cases}1 - k^{2} \neq 0\\\Delta = (-4k)^{2} + 24(1 - k^{2}) > 0\end{cases}$,解得$-\sqrt{3} < k < \sqrt{3}$且$k \neq \pm 1$. 设$A(x_{1},y_{1})$,$B(x_{2},y_{2})$,则$x_{1} + x_{2} = \frac{4k}{1 - k^{2}}$,$x_{1}x_{2} = -\frac{6}{1 - k^{2}}$, 所以$\left|AB\right| = \sqrt{1 + k^{2}} \cdot \sqrt{(x_{1} + x_{2})^{2} - 4x_{1}x_{2}}=\sqrt{1 + k^{2}} \cdot \sqrt{(\frac{4k}{1 - k^{2}})^{2} + \frac{24}{1 - k^{2}}}$ 又原点$O$到直线$l$的距离$d = \frac{2}{\sqrt{1 + k^{2}}}$, 所以$S_{\triangle OAB} = \frac{1}{2}d \cdot \left|AB\right| = \frac{1}{2} × \frac{2}{\sqrt{1 + k^{2}}} × \sqrt{1 + k^{2}} \cdot \sqrt{(\frac{4k}{1 - k^{2}})^{2} + \frac{24}{1 - k^{2}}}$ 又$S_{\triangle OAB} = 2\sqrt{2}$,即$\frac{\sqrt{3 - k^{2}}}{\left|1 - k^{2}\right|} = 1$,所以$k^{4} - k^{2} - 2 = 0$,解得$k = \pm \sqrt{2}$,满足条件. 故满足条件的直线$l$有两条,其方程分别为$y = \sqrt{2}x + 2$和$y = -\sqrt{2}x + 2$.
已知抛物线$C:y^{2}=3x$的焦点为$F$,斜率为$\frac{3}{2}$的直线$l$与$C$的交点为$A$,$B$,与$x$轴的交点为$P$.
(1)若$\vert AF\vert+\vert BF\vert=4$,求直线$l$的方程;
(2)若$\overrightarrow{AP}=3\overrightarrow{PB}$,求$\vert AB\vert$.
(1)若$\vert AF\vert+\vert BF\vert=4$,求直线$l$的方程;
(2)若$\overrightarrow{AP}=3\overrightarrow{PB}$,求$\vert AB\vert$.
解 设直线$l$的方程为$y = \frac{3}{2}x + t$,$A(x_{1},y_{1})$,$B(x_{2},y_{2})$.
(1)由题设得$F(\frac{3}{4},0)$,故$\left|AF\right| + \left|BF\right| = x_{1} + x_{2} + \frac{3}{2}$.
又$\left|AF\right| + \left|BF\right| = 4$,所以$x_{1} + x_{2} = \frac{5}{2}$.
由$\begin{cases}y = \frac{3}{2}x + t\\y^{2} = 3x\end{cases}$可得$9x^{2} + 12(t - 1)x + 4t^{2} = 0$,其中$\Delta = 144(1 - 2t) > 0$,
则$x_{1} + x_{2} = -\frac{12(t - 1)}{9}$,从而$-\frac{12(t - 1)}{9} = \frac{5}{2}$,得$t = -\frac{7}{8}$(满足$\Delta > 0$),所以$l$的方程为$y = \frac{3}{2}x - \frac{7}{8}$.
(2)由$\overrightarrow{AP} = 3\overrightarrow{PB}$,可得$y_{1} = -3y_{2}$.
由$\begin{cases}y = \frac{3}{2}x + t\\y^{2} = 3x\end{cases}$可得$y^{2} - 2y + 2t = 0$,其中$\Delta = 4 - 8t > 0$,
所以$y_{1} + y_{2} = 2$,从而$-3y_{2} + y_{2} = 2$,故$y_{2} = -1$,$y_{1} = 3$.
代入$C$的方程得$x_{1} = 3$,$x_{2} = \frac{1}{3}$.
所以$A(3,3)$,$B(\frac{1}{3},-1)$,故$\left|AB\right| = \frac{4\sqrt{13}}{3}$.
答案:
训练3 解 设直线$l$的方程为$y = \frac{3}{2}x + t$,$A(x_{1},y_{1})$,$B(x_{2},y_{2})$.
(1)由题设得$F(\frac{3}{4},0)$,故$\left|AF\right| + \left|BF\right| = x_{1} + x_{2} + \frac{3}{2}$. 又$\left|AF\right| + \left|BF\right| = 4$,所以$x_{1} + x_{2} = \frac{5}{2}$.由$\begin{cases}y = \frac{3}{2}x + t\\y^{2} = 3x\end{cases}$可得$9x^{2} + 12(t - 1)x + 4t^{2} = 0$,其中$\Delta = 144(1 - 2t) > 0$, 则$x_{1} + x_{2} = -\frac{12(t - 1)}{9}$,从而$-\frac{12(t - 1)}{9} = \frac{5}{2}$,得$t = -\frac{7}{8}$(满足$\Delta > 0$),所以$l$的方程为$y = \frac{3}{2}x - \frac{7}{8}$.
(2)由$\overrightarrow{AP} = 3\overrightarrow{PB}$,可得$y_{1} = -3y_{2}$. 由$\begin{cases}y = \frac{3}{2}x + t\\y^{2} = 3x\end{cases}$可得$y^{2} - 2y + 2t = 0$,其中$\Delta = 4 - 8t > 0$, 所以$y_{1} + y_{2} = 2$,从而$-3y_{2} + y_{2} = 2$,故$y_{2} = -1$,$y_{1} = 3$. 代入$C$的方程得$x_{1} = 3$,$x_{2} = \frac{1}{3}$. 所以$A(3,3)$,$B(\frac{1}{3},-1)$,故$\left|AB\right| = \frac{4\sqrt{13}}{3}$.
(1)由题设得$F(\frac{3}{4},0)$,故$\left|AF\right| + \left|BF\right| = x_{1} + x_{2} + \frac{3}{2}$. 又$\left|AF\right| + \left|BF\right| = 4$,所以$x_{1} + x_{2} = \frac{5}{2}$.由$\begin{cases}y = \frac{3}{2}x + t\\y^{2} = 3x\end{cases}$可得$9x^{2} + 12(t - 1)x + 4t^{2} = 0$,其中$\Delta = 144(1 - 2t) > 0$, 则$x_{1} + x_{2} = -\frac{12(t - 1)}{9}$,从而$-\frac{12(t - 1)}{9} = \frac{5}{2}$,得$t = -\frac{7}{8}$(满足$\Delta > 0$),所以$l$的方程为$y = \frac{3}{2}x - \frac{7}{8}$.
(2)由$\overrightarrow{AP} = 3\overrightarrow{PB}$,可得$y_{1} = -3y_{2}$. 由$\begin{cases}y = \frac{3}{2}x + t\\y^{2} = 3x\end{cases}$可得$y^{2} - 2y + 2t = 0$,其中$\Delta = 4 - 8t > 0$, 所以$y_{1} + y_{2} = 2$,从而$-3y_{2} + y_{2} = 2$,故$y_{2} = -1$,$y_{1} = 3$. 代入$C$的方程得$x_{1} = 3$,$x_{2} = \frac{1}{3}$. 所以$A(3,3)$,$B(\frac{1}{3},-1)$,故$\left|AB\right| = \frac{4\sqrt{13}}{3}$.
查看更多完整答案,请扫码查看