2025年创新设计高考总复习数学浙江专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年创新设计高考总复习数学浙江专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第150页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
例3 (2024·新高考Ⅰ卷)设$m$为正整数,数列$a_{1}$,$a_{2}$,$\cdots$,$a_{4m + 2}$是公差不为$0$的等差数列,若从中删去两项$a_{i}$和$a_{j}(i\lt j)$后剩余的$4m$项可被平均分为$m$组,且每组的$4$个数都能构成等差数列,则称数列$a_{1}$,$a_{2}$,$\cdots$,$a_{4m + 2}$是$(i,j)-$可分数列.
(1)写出所有的$(i,j)$,$1\leqslant i\lt j\leqslant 6$,使得数列$a_{1}$,$a_{2}$,$\cdots$,$a_{6}$是$(i,j)-$可分数列;
(2)当$m\geqslant 3$时,证明:数列$a_{1}$,$a_{2}$,$\cdots$,$a_{4m + 2}$是$(2,13)-$可分数列;
(3)从$1$,$2$,$\cdots$,$4m + 2$中一次任取两个数$i$和$j(i\lt j)$,记数列$a_{1}$,$a_{2}$,$\cdots$,$a_{4m + 2}$是$(i,j)-$可分数列的概率为$P_{m}$,证明:$P_{m}\gt \dfrac {1}{8}$.
(1)写出所有的$(i,j)$,$1\leqslant i\lt j\leqslant 6$,使得数列$a_{1}$,$a_{2}$,$\cdots$,$a_{6}$是$(i,j)-$可分数列;
(2)当$m\geqslant 3$时,证明:数列$a_{1}$,$a_{2}$,$\cdots$,$a_{4m + 2}$是$(2,13)-$可分数列;
(3)从$1$,$2$,$\cdots$,$4m + 2$中一次任取两个数$i$和$j(i\lt j)$,记数列$a_{1}$,$a_{2}$,$\cdots$,$a_{4m + 2}$是$(i,j)-$可分数列的概率为$P_{m}$,证明:$P_{m}\gt \dfrac {1}{8}$.
满足题意的所有$(i,j)$为$(1,2),(1,6),(5,6)$.
当$m = 3$时,删去$a_{2},a_{13}$,其余项可分为以下3组:$a_{1},a_{4},a_{7},a_{10}$为第1组,$a_{3},a_{6},a_{9},a_{12}$为第2组,$a_{5},a_{8},a_{11},a_{14}$为第3组,当$m>3$时,删去$a_{2},a_{13}$,其余项可分为以下$m$组:$a_{1},a_{4},a_{7},a_{10}$为第1组,$a_{3},a_{6},a_{9},a_{12}$为第2组,$a_{5},a_{8},a_{11},a_{14}$为第3组,$a_{15},a_{16},a_{17},a_{18}$为第5组,$\cdots\cdots$,$a_{4m - 1},a_{4m},a_{4m + 1},a_{4m + 2}$为第$m$组,可知每组的4个数都能构成等差数列,故数列$a_{1},a_{4},\cdots,a_{4m + 2}$是$(2,13)-$可分数列.
易知$a_{1},a_{2},\cdots,a_{4m + 2}$是$(i,j)-$可分数列$\Rightarrow1,2,\cdots,4m + 2$是$(4p + 1,4q + 2)-$可分数列,其中$p,q\in\{0,1,\cdots,m\}$.当$q - p>1$时,删去$4p + 2,4q + 1$,将$1\sim4p$与$4q + 3\sim4m + 2$从小到大,每4项分为1组,可知每组的4个数成等差数列.考虑$4p + 1,4q + 3,4q + 4,\cdots,4q,4q + 2$是否可分,等同于考虑$1,3,4,\cdots,4t,4t + 2$是否可分,其中$t = q - p - 1$,可分为$(1,t + 1,2t + 1,3t + 1),(3,t + 3,2t + 3,3t + 3),(4,t + 4,2t + 4,3t + 4),\cdots,(t,2t,3t,4t),(t + 2,2t + 2,3t + 2,4t + 2)$,每组4个数都能构成等差数列.故数列$1,2,\cdots,4m + 2$是$(4p + 2,4q + 1)-$可分数列,$p,q$且$q - p>1$的可能取值方法数为$C_{m + 1}^{2}-m=\frac{(m - 1)m}{2}$从而$P_{m}\geqslant\frac{\frac{m^{2}+m + 1}{2}}{C_{4m + 2}^{2}}=\frac{m^{2}+m + 1}{8m^{2}+6m + 1}>\frac{1}{8}$.
答案:
例3
(1)解 满足题意的所有$(i,j)$为$(1,2),(1,6),(5,6)$.
(2)证明 当$m = 3$时,删去$a_{2},a_{13}$,其余项可
分为以下3组:$a_{1},a_{4},a_{7},a_{10}$为第1组,$a_{3},a_{6}$,
$a_{9},a_{12}$为第2组,$a_{5},a_{8},a_{11},a_{14}$为第3组,
当$m>3$时,删去$a_{2},a_{13}$,
其余项可分为以下$m$组:
$a_{1},a_{4},a_{7},a_{10}$为第1组,
$a_{3},a_{6},a_{9},a_{12}$为第2组,
$a_{5},a_{8},a_{11},a_{14}$为第3组,
$a_{15},a_{16},a_{17},a_{18}$为第5组,
$\cdots\cdots$,
$a_{4m - 1},a_{4m},a_{4m + 1},a_{4m + 2}$为第$m$组,
可知每组的4个数都能构成等差数列,
故数列$a_{1},a_{4},\cdots,a_{4m + 2}$是$(2,13)-$可分数列.
(3)证明 易知$a_{1},a_{2},\cdots,a_{4m + 2}$是$(i,j)-$可分
数列$\Rightarrow1,2,\cdots,4m + 2$是$(4p + 1,4q + 2)-$可分
数列,其中$p,q\in\{0,1,\cdots,m\}$.
当$q - p>1$时,删去$4p + 2,4q + 1$,
将$1\sim4p$与$4q + 3\sim4m + 2$从小到大,每4项
分为1组,可知每组的4个数成等差数列.
考虑$4p + 1,4q + 3,4q + 4,\cdots,4q,4q + 2$是否可
分,等同于考虑$1,3,4,\cdots,4t,4t + 2$是否可分,
其中$t = q - p - 1$,可分为$(1,t + 1,2t + 1,3t +$
$1),(3,t + 3,2t + 3,3t + 3),(4,t + 4,2t + 4,3t +$
$4),\cdots,(t,2t,3t,4t),(t + 2,2t + 2,3t + 2,4t +$
$2)$,每组4个数都能构成等差数列.
故数列$1,2,\cdots,4m + 2$是$(4p + 2,4q + 1)-$可分
数列,$p,q$且$q - p>1$的可能取值方法数为
$C_{m + 1}^{2}-m=\frac{(m - 1)m}{2}$
从而$P_{m}\geqslant\frac{\frac{m^{2}+m + 1}{2}}{C_{4m + 2}^{2}}=\frac{m^{2}+m + 1}{8m^{2}+6m + 1}>\frac{1}{8}$.
(1)解 满足题意的所有$(i,j)$为$(1,2),(1,6),(5,6)$.
(2)证明 当$m = 3$时,删去$a_{2},a_{13}$,其余项可
分为以下3组:$a_{1},a_{4},a_{7},a_{10}$为第1组,$a_{3},a_{6}$,
$a_{9},a_{12}$为第2组,$a_{5},a_{8},a_{11},a_{14}$为第3组,
当$m>3$时,删去$a_{2},a_{13}$,
其余项可分为以下$m$组:
$a_{1},a_{4},a_{7},a_{10}$为第1组,
$a_{3},a_{6},a_{9},a_{12}$为第2组,
$a_{5},a_{8},a_{11},a_{14}$为第3组,
$a_{15},a_{16},a_{17},a_{18}$为第5组,
$\cdots\cdots$,
$a_{4m - 1},a_{4m},a_{4m + 1},a_{4m + 2}$为第$m$组,
可知每组的4个数都能构成等差数列,
故数列$a_{1},a_{4},\cdots,a_{4m + 2}$是$(2,13)-$可分数列.
(3)证明 易知$a_{1},a_{2},\cdots,a_{4m + 2}$是$(i,j)-$可分
数列$\Rightarrow1,2,\cdots,4m + 2$是$(4p + 1,4q + 2)-$可分
数列,其中$p,q\in\{0,1,\cdots,m\}$.
当$q - p>1$时,删去$4p + 2,4q + 1$,
将$1\sim4p$与$4q + 3\sim4m + 2$从小到大,每4项
分为1组,可知每组的4个数成等差数列.
考虑$4p + 1,4q + 3,4q + 4,\cdots,4q,4q + 2$是否可
分,等同于考虑$1,3,4,\cdots,4t,4t + 2$是否可分,
其中$t = q - p - 1$,可分为$(1,t + 1,2t + 1,3t +$
$1),(3,t + 3,2t + 3,3t + 3),(4,t + 4,2t + 4,3t +$
$4),\cdots,(t,2t,3t,4t),(t + 2,2t + 2,3t + 2,4t +$
$2)$,每组4个数都能构成等差数列.
故数列$1,2,\cdots,4m + 2$是$(4p + 2,4q + 1)-$可分
数列,$p,q$且$q - p>1$的可能取值方法数为
$C_{m + 1}^{2}-m=\frac{(m - 1)m}{2}$
从而$P_{m}\geqslant\frac{\frac{m^{2}+m + 1}{2}}{C_{4m + 2}^{2}}=\frac{m^{2}+m + 1}{8m^{2}+6m + 1}>\frac{1}{8}$.
训练3 (2025·广州调研)对于每项均是正整数的数列$P:a_{1}$,$a_{2}$,$\cdots$,$a_{n}$,定义变换$T_{1}$,$T_{1}$将数列$P$变换成数列$T_{1}(P):n$,$a_{1}-1$,$a_{2}-1$,$\cdots$,$a_{n}-1$.对于每项均是非负整数的数列$Q:b_{1}$,$b_{2}$,$\cdots$,$b_{m}$,定义$S(Q)=2(b_{1}+2b_{2}+\cdots +mb_{m})+b_{1}^{2}+b_{2}^{2}+\cdots +b_{m}^{2}$,定义变换$T_{2}$,$T_{2}$将数列$Q$各项从大到小排列,然后去掉所有为零的项,得到数列$T_{2}(Q)$.
(1)若数列$P_{0}$为$2$,$4$,$3$,$7$,求$S(T_{1}(P_{0}))$的值;
(2)对于每项均是正整数的有穷数列$P_{0}$,令$P_{k + 1}=T_{2}(T_{1}(P_{k}))$,$k\in \mathbf{N}$.
①探究$S(T_{1}(P_{0}))$与$S(P_{0})$的关系;
②证明:$S(P_{k + 1})\leqslant S(P_{k})$.
(1)若数列$P_{0}$为$2$,$4$,$3$,$7$,求$S(T_{1}(P_{0}))$的值;
(2)对于每项均是正整数的有穷数列$P_{0}$,令$P_{k + 1}=T_{2}(T_{1}(P_{k}))$,$k\in \mathbf{N}$.
①探究$S(T_{1}(P_{0}))$与$S(P_{0})$的关系;
②证明:$S(P_{k + 1})\leqslant S(P_{k})$.
依题意,$P_{0}:2,4,3,7,T_{1}(P_{0})$:$4,1,3,2,6$,$S(T_{1}(P_{0}))=2(2×2 + 1×3+3×3 + 4×2+5×6)+16 + 1+9 + 4+36 = 172$.
记$P_{0}:a_{1},a_{2},\cdots,a_{n}(a_{1},a_{2},\cdots,a_{n}\in N^{*})$,$T_{1}(P_{0}):n,a_{1}-1,a_{2}-1,\cdots,a_{n}-1$,$S(T_{1}(P_{0}))=2[n + 2(a_{1}-1)+3(a_{2}-1)+\cdots+(n + 1)(a_{n}-1)]+n^{2}+(a_{1}-1)^{2}+\cdots+(a_{n}-1)^{2}$,又$S(P_{0})=2(a_{1}+2a_{2}+3a_{3}+\cdots+na_{n})+a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}$,所以$S(T_{1}(P_{0}))-S(P_{0})=2n + 2a_{1}+2a_{2}+\cdots+2a_{n}-4 - 6-\cdots-2(n + 1)+n^{2}+3n-\frac{(2n + 6)\cdot n}{2}=0$,所以$S(T_{1}(P_{0}))=S(P_{0})$.
设$A$是每项均为非负整数的数列$a_{1},a_{2},\cdots,a_{n}$,当存在$1\leq i<j\leq n$,使得$a_{i}\leq a_{j}$时,交换数列A的第$i$项与第$j$项得到数列B,则$S(B)-S(A)=2(ia_{j}+ja_{i}-ia_{i}-ja_{j})=2(i - j)(a_{j}-a_{i})\leq0$,所以$S(B)\leq S(A)$.当存在$1\leq m<n$,使得$a_{m + 1}=a_{m + 2}=\cdots=a_{n}=0$时,若记数列$a_{1},a_{2},\cdots,a_{m}$为C,则$S(C)=S(A)$,因此$S(T_{2}(A))\leq S(A)$,从而对于任意给定的数列$P_{0}$,由$P_{k + 1}=T_{2}(T_{1}(P_{k}))(k = 0,1,\cdots)$,由①知$S(T_{1}(P_{k}))=S(P_{k})$,所以$S(P_{k + 1})\leq S(P_{k})$.
答案:
训练3
(1)解 依题意,$P_{0}:2,4,3,7,T_{1}(P_{0})$:
$4,1,3,2,6$,
$S(T_{1}(P_{0}))=2(2×2 + 1×3+3×3 + 4×2+5×6)$
$+16 + 1+9 + 4+36 = 172$.
(2)解 ①记$P_{0}:a_{1},a_{2},\cdots,a_{n}(a_{1},a_{2},\cdots,a_{n}\in$
$N^{*})$,
$T_{1}(P_{0}):n,a_{1}-1,a_{2}-1,\cdots,a_{n}-1$,
$S(T_{1}(P_{0}))=2[n + 2(a_{1}-1)+3(a_{2}-1)+\cdots$
$+(n + 1)(a_{n}-1)]+n^{2}+(a_{1}-1)^{2}+\cdots+(a_{n}-1)^{2}$,
又$S(P_{0})=2(a_{1}+2a_{2}+3a_{3}+\cdots+na_{n})+a_{1}^{2}+$
$a_{2}^{2}+\cdots+a_{n}^{2}$,
所以$S(T_{1}(P_{0}))-S(P_{0})=2n + 2a_{1}+2a_{2}+\cdots+2a_{n}-4 - 6-\cdots-2(n + 1)+n^{2}+3n-\frac{(2n + 6)\cdot n}{2}=0$,
所以$S(T_{1}(P_{0}))=S(P_{0})$.
②证明 设$A$是每项均为非负整数的数列$a_{1}$,
$a_{2},\cdots,a_{n}$,
当存在$1\leq i<j\leq n$,使得$a_{i}\leq a_{j}$时,交换数列
A的第$i$项与第$j$项得到数列B,
则$S(B)-S(A)=2(ia_{j}+ja_{i}-ia_{i}-ja_{j})=$
$2(i - j)(a_{j}-a_{i})\leq0$,所以$S(B)\leq S(A)$.
当存在$1\leq m<n$,使得$a_{m + 1}=a_{m + 2}=\cdots=a_{n}$
$=0$时,若记数列$a_{1},a_{2},\cdots,a_{m}$为C,
则$S(C)=S(A)$,
因此$S(T_{2}(A))\leq S(A)$,从而对于任意给定的
数列$P_{0}$,
由$P_{k + 1}=T_{2}(T_{1}(P_{k}))(k = 0,1,\cdots)$,
由①知$S(T_{1}(P_{k}))=S(P_{k})$,
所以$S(P_{k + 1})\leq S(P_{k})$.
(1)解 依题意,$P_{0}:2,4,3,7,T_{1}(P_{0})$:
$4,1,3,2,6$,
$S(T_{1}(P_{0}))=2(2×2 + 1×3+3×3 + 4×2+5×6)$
$+16 + 1+9 + 4+36 = 172$.
(2)解 ①记$P_{0}:a_{1},a_{2},\cdots,a_{n}(a_{1},a_{2},\cdots,a_{n}\in$
$N^{*})$,
$T_{1}(P_{0}):n,a_{1}-1,a_{2}-1,\cdots,a_{n}-1$,
$S(T_{1}(P_{0}))=2[n + 2(a_{1}-1)+3(a_{2}-1)+\cdots$
$+(n + 1)(a_{n}-1)]+n^{2}+(a_{1}-1)^{2}+\cdots+(a_{n}-1)^{2}$,
又$S(P_{0})=2(a_{1}+2a_{2}+3a_{3}+\cdots+na_{n})+a_{1}^{2}+$
$a_{2}^{2}+\cdots+a_{n}^{2}$,
所以$S(T_{1}(P_{0}))-S(P_{0})=2n + 2a_{1}+2a_{2}+\cdots+2a_{n}-4 - 6-\cdots-2(n + 1)+n^{2}+3n-\frac{(2n + 6)\cdot n}{2}=0$,
所以$S(T_{1}(P_{0}))=S(P_{0})$.
②证明 设$A$是每项均为非负整数的数列$a_{1}$,
$a_{2},\cdots,a_{n}$,
当存在$1\leq i<j\leq n$,使得$a_{i}\leq a_{j}$时,交换数列
A的第$i$项与第$j$项得到数列B,
则$S(B)-S(A)=2(ia_{j}+ja_{i}-ia_{i}-ja_{j})=$
$2(i - j)(a_{j}-a_{i})\leq0$,所以$S(B)\leq S(A)$.
当存在$1\leq m<n$,使得$a_{m + 1}=a_{m + 2}=\cdots=a_{n}$
$=0$时,若记数列$a_{1},a_{2},\cdots,a_{m}$为C,
则$S(C)=S(A)$,
因此$S(T_{2}(A))\leq S(A)$,从而对于任意给定的
数列$P_{0}$,
由$P_{k + 1}=T_{2}(T_{1}(P_{k}))(k = 0,1,\cdots)$,
由①知$S(T_{1}(P_{k}))=S(P_{k})$,
所以$S(P_{k + 1})\leq S(P_{k})$.
查看更多完整答案,请扫码查看