2025年创新设计高考总复习数学浙江专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年创新设计高考总复习数学浙江专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第169页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
考点二 空间向量的数量积及其应用
例 2 如图,正四面体 $A - BCD$(所有棱长均相等)的棱长为 $1$,$E,F,G,H$ 分别是正四面体 $ABCD$ 中各棱的中点,设 $\overrightarrow{AB}=a$,$\overrightarrow{AC}=b$,$\overrightarrow{AD}=c$,试采用向量法解决下列问题:
(1) 求 $\overrightarrow{EF}$ 的模长;
(2) 求 $\overrightarrow{EF},\overrightarrow{GH}$ 的夹角。

思维建模 由向量数量积的定义知,要求 $a$ 与 $b$ 的数量积,需已知 $|a|,|b|$ 和 $\langle a,b\rangle$,$a$ 与 $b$ 的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使 $a\cdot b$ 计算准确。
例 2 如图,正四面体 $A - BCD$(所有棱长均相等)的棱长为 $1$,$E,F,G,H$ 分别是正四面体 $ABCD$ 中各棱的中点,设 $\overrightarrow{AB}=a$,$\overrightarrow{AC}=b$,$\overrightarrow{AD}=c$,试采用向量法解决下列问题:
(1) 求 $\overrightarrow{EF}$ 的模长;
(2) 求 $\overrightarrow{EF},\overrightarrow{GH}$ 的夹角。
$\frac{\sqrt{2}}{2}$
$90^{\circ}$
思维建模 由向量数量积的定义知,要求 $a$ 与 $b$ 的数量积,需已知 $|a|,|b|$ 和 $\langle a,b\rangle$,$a$ 与 $b$ 的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使 $a\cdot b$ 计算准确。
答案:
例2解
(1)因为正四面体$A - BCD$的棱长为$1$,$E,F,G,H$分别是正四面体$A - BCD$中各棱的中点,$\overrightarrow{AB} = \boldsymbol{a},\overrightarrow{AC} = \boldsymbol{b},\overrightarrow{AD} = \boldsymbol{c}$,所以$\overrightarrow{BE} = \frac{1}{2}\overrightarrow{BC} = \frac{1}{2}(\overrightarrow{AC} - \overrightarrow{AB})=\frac{1}{2}(\boldsymbol{b} - \boldsymbol{a})$,$\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AD} = \frac{1}{2}\boldsymbol{c}$,所以$\overrightarrow{EF} = \overrightarrow{EB} + \overrightarrow{BA} + \overrightarrow{AF}=-\frac{1}{2}(\boldsymbol{b} - \boldsymbol{a}) - \boldsymbol{a} + \frac{1}{2}\boldsymbol{c} = \frac{1}{2}(\boldsymbol{c} - \boldsymbol{a} - \boldsymbol{b})$,所以$|\overrightarrow{EF}|^{2} = \frac{1}{4}(\boldsymbol{c} - \boldsymbol{a} - \boldsymbol{b})^{2}=\frac{1}{4}(\boldsymbol{c}^{2} + \boldsymbol{a}^{2} + \boldsymbol{b}^{2} - 2\boldsymbol{a} \cdot \boldsymbol{c} + 2\boldsymbol{a} \cdot \boldsymbol{b} - 2\boldsymbol{b} \cdot \boldsymbol{c})=\frac{1}{4}(1 + 1 + 1 - 2 × 1 × 1 × \cos 60^{\circ} + 2 × 1 × 1 × \cos 60^{\circ} - 2 × 1 × 1 × \cos 60^{\circ}) = \frac{1}{2}$,故$|\overrightarrow{EF}| = \frac{\sqrt{2}}{2}$.
(2)在正四面体$A - BCD$中,$\overrightarrow{EF} = \frac{1}{2}(\boldsymbol{c} - \boldsymbol{a} - \boldsymbol{b}),|\overrightarrow{EF}| = \frac{\sqrt{2}}{2}$.同理,$\overrightarrow{GH} = \frac{1}{2}(\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a}),|\overrightarrow{GH}| = \frac{\sqrt{2}}{2}$.所以$\cos\langle\overrightarrow{EF},\overrightarrow{GH}\rangle = \frac{\overrightarrow{EF} \cdot \overrightarrow{GH}}{|\overrightarrow{EF}||\overrightarrow{GH}|}=\frac{\frac{1}{2}(\boldsymbol{c} - \boldsymbol{a} - \boldsymbol{b}) \cdot \frac{1}{2}(\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a})}{\frac{\sqrt{2}}{2} × \frac{\sqrt{2}}{2}}=\frac{1}{2}[(\boldsymbol{c} - \boldsymbol{a})^{2} - \boldsymbol{b}^{2}]=\frac{1}{2}(\boldsymbol{c}^{2} + \boldsymbol{a}^{2} - 2\boldsymbol{c} \cdot \boldsymbol{a} - \boldsymbol{b}^{2})=\frac{1}{2}(1 + 1 - 2 × 1 × 1 × \cos 60^{\circ} - 1) = 0$,所以$\overrightarrow{EF}$与$\overrightarrow{GH}$的夹角为$90^{\circ}$.
(1)因为正四面体$A - BCD$的棱长为$1$,$E,F,G,H$分别是正四面体$A - BCD$中各棱的中点,$\overrightarrow{AB} = \boldsymbol{a},\overrightarrow{AC} = \boldsymbol{b},\overrightarrow{AD} = \boldsymbol{c}$,所以$\overrightarrow{BE} = \frac{1}{2}\overrightarrow{BC} = \frac{1}{2}(\overrightarrow{AC} - \overrightarrow{AB})=\frac{1}{2}(\boldsymbol{b} - \boldsymbol{a})$,$\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AD} = \frac{1}{2}\boldsymbol{c}$,所以$\overrightarrow{EF} = \overrightarrow{EB} + \overrightarrow{BA} + \overrightarrow{AF}=-\frac{1}{2}(\boldsymbol{b} - \boldsymbol{a}) - \boldsymbol{a} + \frac{1}{2}\boldsymbol{c} = \frac{1}{2}(\boldsymbol{c} - \boldsymbol{a} - \boldsymbol{b})$,所以$|\overrightarrow{EF}|^{2} = \frac{1}{4}(\boldsymbol{c} - \boldsymbol{a} - \boldsymbol{b})^{2}=\frac{1}{4}(\boldsymbol{c}^{2} + \boldsymbol{a}^{2} + \boldsymbol{b}^{2} - 2\boldsymbol{a} \cdot \boldsymbol{c} + 2\boldsymbol{a} \cdot \boldsymbol{b} - 2\boldsymbol{b} \cdot \boldsymbol{c})=\frac{1}{4}(1 + 1 + 1 - 2 × 1 × 1 × \cos 60^{\circ} + 2 × 1 × 1 × \cos 60^{\circ} - 2 × 1 × 1 × \cos 60^{\circ}) = \frac{1}{2}$,故$|\overrightarrow{EF}| = \frac{\sqrt{2}}{2}$.
(2)在正四面体$A - BCD$中,$\overrightarrow{EF} = \frac{1}{2}(\boldsymbol{c} - \boldsymbol{a} - \boldsymbol{b}),|\overrightarrow{EF}| = \frac{\sqrt{2}}{2}$.同理,$\overrightarrow{GH} = \frac{1}{2}(\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a}),|\overrightarrow{GH}| = \frac{\sqrt{2}}{2}$.所以$\cos\langle\overrightarrow{EF},\overrightarrow{GH}\rangle = \frac{\overrightarrow{EF} \cdot \overrightarrow{GH}}{|\overrightarrow{EF}||\overrightarrow{GH}|}=\frac{\frac{1}{2}(\boldsymbol{c} - \boldsymbol{a} - \boldsymbol{b}) \cdot \frac{1}{2}(\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a})}{\frac{\sqrt{2}}{2} × \frac{\sqrt{2}}{2}}=\frac{1}{2}[(\boldsymbol{c} - \boldsymbol{a})^{2} - \boldsymbol{b}^{2}]=\frac{1}{2}(\boldsymbol{c}^{2} + \boldsymbol{a}^{2} - 2\boldsymbol{c} \cdot \boldsymbol{a} - \boldsymbol{b}^{2})=\frac{1}{2}(1 + 1 - 2 × 1 × 1 × \cos 60^{\circ} - 1) = 0$,所以$\overrightarrow{EF}$与$\overrightarrow{GH}$的夹角为$90^{\circ}$.
训练 2 如图所示,四棱柱 $ABCD - A_1B_1C_1D_1$ 中,底面为平行四边形,以顶点 $A$ 为端点的三条棱长都为 $1$,且两两夹角为 $60^{\circ}$。求:
(1) $AC_1$ 的长;
(2) $BD_1$ 与 $AC$ 夹角的余弦值。

(1) $AC_1$ 的长;
(2) $BD_1$ 与 $AC$ 夹角的余弦值。
$\sqrt{6}$,$\frac{\sqrt{6}}{6}$
答案:
训练2解
(1)记$\overrightarrow{AB} = \boldsymbol{a},\overrightarrow{AD} = \boldsymbol{b},\overrightarrow{AA_{1}} = \boldsymbol{c}$,则$|\boldsymbol{a}| = |\boldsymbol{b}| = |\boldsymbol{c}| = 1$,$\langle\boldsymbol{a},\boldsymbol{b}\rangle = \langle\boldsymbol{b},\boldsymbol{c}\rangle = \langle\boldsymbol{c},\boldsymbol{a}\rangle = 60^{\circ}$,$\therefore \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{c} = \boldsymbol{c} \cdot \boldsymbol{a} = \frac{1}{2}$.$|\overrightarrow{AC_{1}}|^{2} = (\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c})^{2}=\boldsymbol{a}^{2} + \boldsymbol{b}^{2} + \boldsymbol{c}^{2} + 2(\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{b} \cdot \boldsymbol{c} + \boldsymbol{c} \cdot \boldsymbol{a})= 1 + 1 + 1 + 2 × (\frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = 6$,$\therefore |\overrightarrow{AC_{1}}| = \sqrt{6}$,即$AC_{1}$的长为$\sqrt{6}$.
(2)$\because \overrightarrow{BD_{1}} = \boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a},\overrightarrow{AC} = \boldsymbol{a} + \boldsymbol{b}$,$\therefore |\overrightarrow{BD_{1}}| = \sqrt{2},|\overrightarrow{AC}| = \sqrt{3}$,$\overrightarrow{BD_{1}} \cdot \overrightarrow{AC} = (\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a}) \cdot (\boldsymbol{a} + \boldsymbol{b})=\boldsymbol{b}^{2} - \boldsymbol{a}^{2} + \boldsymbol{a} \cdot \boldsymbol{c} + \boldsymbol{b} \cdot \boldsymbol{c} = 1$,$\therefore \cos\langle\overrightarrow{BD_{1}},\overrightarrow{AC}\rangle = \frac{\overrightarrow{BD_{1}} \cdot \overrightarrow{AC}}{|\overrightarrow{BD_{1}}||\overrightarrow{AC}|} = \frac{\sqrt{6}}{6}$.$\therefore AC$与$BD_{1}$夹角的余弦值为$\frac{\sqrt{6}}{6}$.
(1)记$\overrightarrow{AB} = \boldsymbol{a},\overrightarrow{AD} = \boldsymbol{b},\overrightarrow{AA_{1}} = \boldsymbol{c}$,则$|\boldsymbol{a}| = |\boldsymbol{b}| = |\boldsymbol{c}| = 1$,$\langle\boldsymbol{a},\boldsymbol{b}\rangle = \langle\boldsymbol{b},\boldsymbol{c}\rangle = \langle\boldsymbol{c},\boldsymbol{a}\rangle = 60^{\circ}$,$\therefore \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{c} = \boldsymbol{c} \cdot \boldsymbol{a} = \frac{1}{2}$.$|\overrightarrow{AC_{1}}|^{2} = (\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c})^{2}=\boldsymbol{a}^{2} + \boldsymbol{b}^{2} + \boldsymbol{c}^{2} + 2(\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{b} \cdot \boldsymbol{c} + \boldsymbol{c} \cdot \boldsymbol{a})= 1 + 1 + 1 + 2 × (\frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = 6$,$\therefore |\overrightarrow{AC_{1}}| = \sqrt{6}$,即$AC_{1}$的长为$\sqrt{6}$.
(2)$\because \overrightarrow{BD_{1}} = \boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a},\overrightarrow{AC} = \boldsymbol{a} + \boldsymbol{b}$,$\therefore |\overrightarrow{BD_{1}}| = \sqrt{2},|\overrightarrow{AC}| = \sqrt{3}$,$\overrightarrow{BD_{1}} \cdot \overrightarrow{AC} = (\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a}) \cdot (\boldsymbol{a} + \boldsymbol{b})=\boldsymbol{b}^{2} - \boldsymbol{a}^{2} + \boldsymbol{a} \cdot \boldsymbol{c} + \boldsymbol{b} \cdot \boldsymbol{c} = 1$,$\therefore \cos\langle\overrightarrow{BD_{1}},\overrightarrow{AC}\rangle = \frac{\overrightarrow{BD_{1}} \cdot \overrightarrow{AC}}{|\overrightarrow{BD_{1}}||\overrightarrow{AC}|} = \frac{\sqrt{6}}{6}$.$\therefore AC$与$BD_{1}$夹角的余弦值为$\frac{\sqrt{6}}{6}$.
考点三 利用空间向量证明平行与垂直
例 3 如图,已知 $PA\perp$ 平面 $ABCD$,四边形 $ABCD$ 为矩形,$PA = AD$,$M,N$ 分别为 $AB,PC$ 的中点,求证:
(1) $MN//$ 平面 $PAD$;
(2) 平面 $PMC\perp$ 平面 $PDC$。

例 3 如图,已知 $PA\perp$ 平面 $ABCD$,四边形 $ABCD$ 为矩形,$PA = AD$,$M,N$ 分别为 $AB,PC$ 的中点,求证:
(1) $MN//$ 平面 $PAD$;
(2) 平面 $PMC\perp$ 平面 $PDC$。
证明 (1)由题意,以$A$为坐标原点,$AB$,$AD$,$AP$所在的直线分别为$x$轴、$y$轴、$z$轴建立如图所示的空间直角坐标系$A - xyz$.设$PA = AD = a(a > 0)$,$AB = b(b > 0)$,则有$A(0,0,0),P(0,0,a),D(0,a,0),C(b,a,0)$,$B(b,0,0)$.因为$M,N$分别为$AB,PC$的中点,所以$M(\frac{b}{2},0,0)$,$N(\frac{b}{2},\frac{a}{2},\frac{a}{2})$,所以$\overrightarrow{MN} = (0,\frac{a}{2},\frac{a}{2})$,又$\overrightarrow{AP} = (0,0,a),\overrightarrow{AD} = (0,a,0)$,所以$\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AP} + \frac{1}{2}\overrightarrow{AD}$.又$\overrightarrow{MN}\not\subset$平面$PAD$,所以$MN//$平面$PAD$.(2)结合(1)知,$M(\frac{b}{2},0,0),\overrightarrow{PC} = (b,a,-a)$,$\overrightarrow{PM} = (\frac{b}{2},0,-a),\overrightarrow{PD} = (0,a,-a)$.设平面$PMC$的法向量为$\boldsymbol{n_{1}} = (x_{1},y_{1},z_{1})$,则$\begin{cases}\boldsymbol{n_{1}} \cdot \overrightarrow{PC} = 0,\\\boldsymbol{n_{1}} \cdot \overrightarrow{PM} = 0,\end{cases}$即$\begin{cases}bx_{1} + ay_{1} - az_{1} = 0,\frac{b}{2}x_{1} - az_{1} = 0,\end{cases}$令$z_{1} = b$,则$x_{1} = 2a,y_{1} = - b$,得$\boldsymbol{n_{1}} = (2a,-b,b)$.设平面$PDC$的法向量为$\boldsymbol{n_{2}} = (x_{2},y_{2},z_{2})$,则$\begin{cases}\boldsymbol{n_{2}} \cdot \overrightarrow{PC} = 0,\\\boldsymbol{n_{2}} \cdot \overrightarrow{PD} = 0,\end{cases}$即$\begin{cases}bx_{2} + ay_{2} - az_{2} = 0,\\ay_{2} - az_{2} = 0,\end{cases}$得$x_{2} = 0$,令$z_{2} = 1$,则$y_{2} = 1$,得$\boldsymbol{n_{2}} = (0,1,1)$.因为$\boldsymbol{n_{1}} \cdot \boldsymbol{n_{2}} = 0 - b + b = 0$,所以$\boldsymbol{n_{1}}\perp\boldsymbol{n_{2}}$,故平面$PMC\perp$平面$PDC$.
答案:
例3证明
(1)由题意,以$A$为坐标原点,$AB$,$AD$,$AP$所在的直线分别为$x$轴、$y$轴、$z$轴建立如图所示的空间直角坐标系$A - xyz$.设$PA = AD = a(a > 0)$,$AB = b(b > 0)$,则有$A(0,0,0),P(0,0,a),D(0,a,0),C(b,a,0)$,
$B(b,0,0)$.因为$M,N$分别为$AB,PC$的中点,所以$M(\frac{b}{2},0,0)$,$N(\frac{b}{2},\frac{a}{2},\frac{a}{2})$,所以$\overrightarrow{MN} = (0,\frac{a}{2},\frac{a}{2})$,又$\overrightarrow{AP} = (0,0,a),\overrightarrow{AD} = (0,a,0)$,所以$\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AP} + \frac{1}{2}\overrightarrow{AD}$.又$\overrightarrow{MN}\not\subset$平面$PAD$,所以$MN//$平面$PAD$.
(2)结合
(1)知,$M(\frac{b}{2},0,0),\overrightarrow{PC} = (b,a,-a)$,$\overrightarrow{PM} = (\frac{b}{2},0,-a),\overrightarrow{PD} = (0,a,-a)$.设平面$PMC$的法向量为$\boldsymbol{n_{1}} = (x_{1},y_{1},z_{1})$,则$\begin{cases}\boldsymbol{n_{1}} \cdot \overrightarrow{PC} = 0,\\\boldsymbol{n_{1}} \cdot \overrightarrow{PM} = 0,\end{cases}$即$\begin{cases}bx_{1} + ay_{1} - az_{1} = 0,\frac{b}{2}x_{1} - az_{1} = 0,\end{cases}$令$z_{1} = b$,则$x_{1} = 2a,y_{1} = - b$,得$\boldsymbol{n_{1}} = (2a,-b,b)$.设平面$PDC$的法向量为$\boldsymbol{n_{2}} = (x_{2},y_{2},z_{2})$,则$\begin{cases}\boldsymbol{n_{2}} \cdot \overrightarrow{PC} = 0,\\\boldsymbol{n_{2}} \cdot \overrightarrow{PD} = 0,\end{cases}$即$\begin{cases}bx_{2} + ay_{2} - az_{2} = 0,\\ay_{2} - az_{2} = 0,\end{cases}$得$x_{2} = 0$,令$z_{2} = 1$,则$y_{2} = 1$,得$\boldsymbol{n_{2}} = (0,1,1)$.因为$\boldsymbol{n_{1}} \cdot \boldsymbol{n_{2}} = 0 - b + b = 0$,所以$\boldsymbol{n_{1}}\perp\boldsymbol{n_{2}}$,故平面$PMC\perp$平面$PDC$.
例3证明
(1)由题意,以$A$为坐标原点,$AB$,$AD$,$AP$所在的直线分别为$x$轴、$y$轴、$z$轴建立如图所示的空间直角坐标系$A - xyz$.设$PA = AD = a(a > 0)$,$AB = b(b > 0)$,则有$A(0,0,0),P(0,0,a),D(0,a,0),C(b,a,0)$,
(2)结合
(1)知,$M(\frac{b}{2},0,0),\overrightarrow{PC} = (b,a,-a)$,$\overrightarrow{PM} = (\frac{b}{2},0,-a),\overrightarrow{PD} = (0,a,-a)$.设平面$PMC$的法向量为$\boldsymbol{n_{1}} = (x_{1},y_{1},z_{1})$,则$\begin{cases}\boldsymbol{n_{1}} \cdot \overrightarrow{PC} = 0,\\\boldsymbol{n_{1}} \cdot \overrightarrow{PM} = 0,\end{cases}$即$\begin{cases}bx_{1} + ay_{1} - az_{1} = 0,\frac{b}{2}x_{1} - az_{1} = 0,\end{cases}$令$z_{1} = b$,则$x_{1} = 2a,y_{1} = - b$,得$\boldsymbol{n_{1}} = (2a,-b,b)$.设平面$PDC$的法向量为$\boldsymbol{n_{2}} = (x_{2},y_{2},z_{2})$,则$\begin{cases}\boldsymbol{n_{2}} \cdot \overrightarrow{PC} = 0,\\\boldsymbol{n_{2}} \cdot \overrightarrow{PD} = 0,\end{cases}$即$\begin{cases}bx_{2} + ay_{2} - az_{2} = 0,\\ay_{2} - az_{2} = 0,\end{cases}$得$x_{2} = 0$,令$z_{2} = 1$,则$y_{2} = 1$,得$\boldsymbol{n_{2}} = (0,1,1)$.因为$\boldsymbol{n_{1}} \cdot \boldsymbol{n_{2}} = 0 - b + b = 0$,所以$\boldsymbol{n_{1}}\perp\boldsymbol{n_{2}}$,故平面$PMC\perp$平面$PDC$.
查看更多完整答案,请扫码查看