2025年思维新观察八年级数学下册人教版天津专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年思维新观察八年级数学下册人教版天津专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年思维新观察八年级数学下册人教版天津专版》

1.如图,在平面直角坐标系中,点B(1,2),AB⊥y轴于点M.点C在x轴的正半轴上,且AB = OC = m,连接AC,BO,AC⊥OB时,
 (1)判断四边形ABCO的形状;
 (2)求m的值.
      Cx
答案:
(1)菱形;
(2)在$\triangle AOM$中,$m^{2}=2^{2}+(m - 1)^{2}$,$m=\frac{5}{2}$。
2.如图,Rt△ACB中,∠ACB = 90°,CD⊥AB于D点,AE平分∠CAB分别交BC、CD于E、G,EF⊥AB于F点,连接FG.
 (1)求证:四边形CEFG为菱形;
 (2)若AB = 10,AC = 8,求菱形的边长.
   DYB
答案:
(1)证明:$\because AE$平分$\angle CAB$,$\therefore EC = EF$,又$\because \angle CGE = 90^{\circ}-\angle DAG$,$\angle CEA = 90^{\circ}-\angle CAE$,$\therefore CG = CE$,$\therefore CG\equalparallel EF$,$\therefore$四边形$CEFG$为菱形;
(2)设$CE = EF = x$,$\triangle ACE\cong\triangle AFE$,$\therefore AC = AF = 8$,$BF = 2$,在$Rt\triangle BEF$中,$x^{2}+2^{2}=(6 - x)^{2}$,解得$x=\frac{8}{3}$,$\therefore EF=\frac{8}{3}$。
3.如图,已知四边形ABCD的对角线AC,BD交于点O,OA = OC,OB = OD,∠1 = ∠2.
 (1)求证:四边形ABCD是菱形;
 (2)E为AO上一点,连接BE,若AE = 4,AB = 6,EB = 2$\sqrt{3}$,求AC的长.
    
答案:
(1)$\because\square ABCD$,$\angle 1=\angle 2=\angle ACB$,$\therefore AB = BC$,$\therefore$四边形$ABCD$为菱形;
(2)$AC\perp BD$,设$OE = x$,$\therefore 6^{2}-(4 + x)^{2}=(2\sqrt{3})^{2}-x^{2}$,$x = 1$,$\therefore AC = 10$。
4.四边形ABCD中,∠A = ∠B = 90°,点E在边AB上,点F在AD的延长线上,且点E与点F关于直线CD对称,过点E作EG//AF交CD于点G,连接FG,DE.
 (1)求证:四边形DEGF是菱形;
 (2)若AB = 10,AF = BC = 8,求菱形DEGF边长.
      
答案:
(1)证$\triangle EDG\cong\triangle FDG(SSS)$,$\therefore \angle EDG=\angle FDG$。$\because EG// AF$,$\therefore \angle EDG=\angle EGD=\angle FDG$,$\therefore EG = ED$,$\therefore$四边形$DEGF$为菱形;
(2)连接$CE$和$CF$,$\because \angle A=\angle B = 90^{\circ}$,$\because AF = BC$,$\therefore$四边形$ABCF$为平行四边形,$\because \angle A = 90^{\circ}$,$\therefore\square ABCF$为矩形,$\therefore CF = AB = 10$。$\because E$、$F$关于直线$CD$对称,$\therefore CE = CF = 10$,$\therefore AE = AB - BE = 4$,设$ED = FD = x$,则$AD = 8 - x$,$\therefore 4^{2}+(8 - x)^{2}=x^{2}$,$\therefore x = 5$。

查看更多完整答案,请扫码查看

关闭