2025年思维新观察八年级数学下册人教版天津专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年思维新观察八年级数学下册人教版天津专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年思维新观察八年级数学下册人教版天津专版》

1. 已知等边△ABC中,点P为平面上一点,PA = 6,PC = 8,PB = 10.
模型:(1)如图1,当P点在△ABC外时,以PA为边长向形外作等边△APD,连接CD.
①求证:CD = BP;
②求∠APC的大小.
运用:(2)如图2,当P点在△ABC内时,仿照上述方法,求∠APC的大小;
拓展:(3)如图3,在△ABC中,AC = 6,AB = 4,∠CAB = 60°,以BC为边长向外作等边△BCD,则AD的长为__________.
     D图1    图2    图3
答案:

(1)①$\triangle ABP\cong \triangle ACD$,$\therefore PB = CD = 10$;②在$\triangle PCD$中,$PC = 8$,$PD = PA = 6$,$\therefore CD^{2}=PC^{2}+PD^{2}\Rightarrow \angle CPD = 90^{\circ}$,$\therefore \angle CPA = 90^{\circ}-60^{\circ}=30^{\circ}$;
(2)如图2,以$PA$为边向形外作等边$\triangle PAD$,$\therefore \triangle ABP\cong \triangle ACD$,$CD = PB = 10$,在$\triangle PCD$中,$CD^{2}=PC^{2}+PD^{2}$,$\therefore \angle CPD = 90^{\circ}$,$\therefore \angle APC = 150^{\circ}$.
(3)作等边$\triangle ACM$,$\therefore \triangle ACD\cong \triangle MCB$,$\therefore AD = BM$,作$ME\perp AB$于$E$点,$AD = BM=\sqrt{7^{2}+(3\sqrt{3})^{2}} = 2\sqrt{19}$.
2. 等腰直角△ACB中,AC = BC,∠ACB = 90°.
模型:(1)如图1,若点P在△ACB外,作CE⊥CP且CE = CP,连接BE,PE,PA.求证:PA⊥BE;
运用:(2)如图1,点P在△ABC外,PC = 4,PB = 3,PA = $\sqrt{41}$,求∠CPB的度数;
拓展:(3)(2023·武汉)仿上法思考:如图2,点P在△ABC外一点,PA = 20,PB = 21,PC = $\frac{13}{2}\sqrt{2}$,求BC的长.
          图1       B图2
答案:
(1)$\angle CAP=\angle CBE\Rightarrow AP\perp BE$;
(2)作$CE\perp CP$,$CE = CP$,$\triangle CBE\cong \triangle CAP$,$BE = PA=\sqrt{41}$,在$\triangle PBE$中,$PB^{2}+PE^{2}=BE^{2}$,$\therefore \angle BPE = 90^{\circ}$,$\therefore \angle BPC = 45^{\circ}$;
(3)作$CE\perp CP$,且$CE = CP$,$\therefore PE = 13$,连$AE$交$PB$于$H$,$\therefore \triangle PCB\cong \triangle ECA$,$\therefore AE = PB = 21$,$AE\perp PB$.
设$AH = x$,$20^{2}-x^{2}=13^{2}-(21 - x)^{2}$,
$\therefore x = 16$,$BH = 9$,$\therefore AB=\sqrt{337}$.

查看更多完整答案,请扫码查看

关闭