2025年教材完全解读八年级数学上册苏科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年教材完全解读八年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第61页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
例1-1 2024·泸州中考
下列各数中,无理数是(
A.$-\frac{1}{3}$
B.3.14
C.0
D.π
下列各数中,无理数是(
D
)。A.$-\frac{1}{3}$
B.3.14
C.0
D.π
答案:
【解析】:
本题主要考察无理数和有理数的定义和识别。
有理数是可以表示为两个整数的比的数,包括整数、有限小数和无限循环小数。
无理数则是不能表示为两个整数的比的数,通常是无限不循环的小数。
分析选项:
A. $-\frac{1}{3}$ 是一个分数,可以表示为两个整数的比,所以是有理数。
B. 3.14 是一个有限小数,可以转化为分数形式,所以也是有理数。
C. 0 是一个整数,整数都是有理数。
D. π 是一个无限不循环小数,不能表示为两个整数的比,所以是无理数。
根据以上分析,只有π是无理数。
【答案】:
D
本题主要考察无理数和有理数的定义和识别。
有理数是可以表示为两个整数的比的数,包括整数、有限小数和无限循环小数。
无理数则是不能表示为两个整数的比的数,通常是无限不循环的小数。
分析选项:
A. $-\frac{1}{3}$ 是一个分数,可以表示为两个整数的比,所以是有理数。
B. 3.14 是一个有限小数,可以转化为分数形式,所以也是有理数。
C. 0 是一个整数,整数都是有理数。
D. π 是一个无限不循环小数,不能表示为两个整数的比,所以是无理数。
根据以上分析,只有π是无理数。
【答案】:
D
例1-2 2024·福建中考
下列实数中,无理数是(
A.-3
B.0
C.$\frac{2}{3}$
D.$\sqrt{5}$
下列实数中,无理数是(
D
)。A.-3
B.0
C.$\frac{2}{3}$
D.$\sqrt{5}$
答案:
【解析】:
本题主要考查无理数的识别。无理数定义为既不是整数也不是分数的实数,即无限不循环小数。
A选项:-3是一个整数,因此它不是无理数。
B选项:0也是一个整数,所以它也不是无理数。
C选项:$\frac{2}{3}$是一个分数,可以表示为两个整数的比,因此它也不是无理数。
D选项:$\sqrt{5}$不能表示为两个整数的比,且其小数部分是无限不循环的,因此它是无理数。
综上所述,只有D选项是无理数。
【答案】:
D
本题主要考查无理数的识别。无理数定义为既不是整数也不是分数的实数,即无限不循环小数。
A选项:-3是一个整数,因此它不是无理数。
B选项:0也是一个整数,所以它也不是无理数。
C选项:$\frac{2}{3}$是一个分数,可以表示为两个整数的比,因此它也不是无理数。
D选项:$\sqrt{5}$不能表示为两个整数的比,且其小数部分是无限不循环的,因此它是无理数。
综上所述,只有D选项是无理数。
【答案】:
D
查看更多完整答案,请扫码查看