2025年高效精练八年级数学上册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高效精练八年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年高效精练八年级数学上册苏科版》

14. (2024春·长春期末)如图,$\triangle ABC\cong \triangle DEF$,点A对应点D,点B对应点E,点B,F,C,E在一条直线上.
(1)求证:$BF=EC;$
证明:$\because \triangle ABC \cong \triangle DEF$,$\therefore$
$BC = EF$
,$\therefore$
$BC - CF = EF - CF$
,$\therefore BF = EC$;
(2)若$AB=3,EF=7$,求AC边的取值范围.
解:$\because \triangle ABC \cong \triangle DEF$,$EF = 7$,$\therefore$
$BC = EF = 7$
,在$\triangle ABC$中,
$BC - AB < AC < BC + AB$
,$\therefore$
$7 - 3 < AC < 7 + 3$
,即
$4 < AC < 10$

答案:
(1) 证明:$ \because \triangle ABC \cong \triangle DEF $,$ \therefore BC = EF $,$ \therefore BC - CF = EF - CF $,$ \therefore BF = EC $;
(2) 解:$ \because \triangle ABC \cong \triangle DEF $,$ EF = 7 $,$ \therefore BC = EF = 7 $,在$ \triangle ABC $中,$ BC - AB < AC < BC + AB $,$ \therefore 7 - 3 < AC < 7 + 3 $,即 $ 4 < AC < 10 $。
15. (2024秋·岳阳楼期中)我们规定:在四边形ABCD中,O是边BC上的一点,如果$\triangle OAB$与$\triangle OCD$全等,那么点O叫作该四边形的“等形点”,在四边形EFGH中,$∠EFG=90^{\circ },$$EF// GH,EF=1,FG=3$,如果该四边形的“等形点”在边GF上,那么GH的长是
1 或 2
.
答案: 1 或 2
16. (2024秋·阜平县期中)如图,$\triangle ABC\cong \triangle EDF$,点A,F,C,E在一条直线上.
(1)求证:$AF=CE;$
证明:由题意可知,$ \triangle ABC \cong \triangle EDF $,$ \therefore AC = EF $,$ \therefore AC - CF = EF - CF $,即 $ AF = CE $;
(2)连接AD,若$∠DAF=∠AFD=∠ADE=2∠B$,求$∠E$的度数.
解:由题意可知,$ \triangle ABC \cong \triangle EDF $,$ \therefore \angle B = \angle EDF $。$ \because \angle AFD = 2 \angle B = \angle EDF + \angle E $,$ \therefore \angle E = \angle EDF = \angle B $。$ \because \angle DAF = \angle ADE = 2 \angle B = 2 \angle E $,$ \angle DAF + \angle ADE + \angle E = 180^{\circ} $,$ \therefore 2 \angle E + 2 \angle E + \angle E = 180^{\circ} $,解得$ \angle E = $
36°
答案:
(1) 证明:由题意可知,$ \triangle ABC \cong \triangle EDF $,$ \therefore AC = EF $,$ \therefore AC - CF = EF - CF $,即 $ AF = CE $;
(2) 解:由题意可知,$ \triangle ABC \cong \triangle EDF $,$ \therefore \angle B = \angle EDF $。$ \because \angle AFD = 2 \angle B = \angle EDF + \angle E $,$ \therefore \angle E = \angle EDF = \angle B $。$ \because \angle DAF = \angle ADE = 2 \angle B = 2 \angle E $,$ \angle DAF + \angle ADE + \angle E = 180^{\circ} $,$ \therefore 2 \angle E + 2 \angle E + \angle E = 180^{\circ} $,解得$ \angle E = 36^{\circ} $。

查看更多完整答案,请扫码查看

关闭