2025年高效精练八年级数学上册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高效精练八年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年高效精练八年级数学上册苏科版》

8. (2025·怒江州模拟)如图,点 D,C 在线段 AF 上,$AD=CF,AB=DE,BC=EF$.
求证:$△ABC\cong △DEF$.

证明:
$\because AD = CF,\therefore AD + DC = CF + DC,\therefore AC = DF$,在$\triangle ABC$和$\triangle DEF$中,$\left\{\begin{array}{l} AB = DE,\\ BC = EF,\\ AC = DF,\end{array}\right. \therefore \triangle ABC\cong \triangle DEF(SSS)$
.
答案: 证明:$\because AD = CF,\therefore AD + DC = CF + DC,\therefore AC = DF$,在$\triangle ABC$和$\triangle DEF$中,$\left\{\begin{array}{l} AB = DE,\\ BC = EF,\\ AC = DF,\end{array}\right. \therefore \triangle ABC\cong \triangle DEF(SSS)$。
9. (2024 秋·安次区期末)已知:如图,$△ABC$是等边三角形,D 是 AC 上一点,$∠ABD=∠ACE,AE// BC$.求证:$△ABD\cong △ACE$.

证明:
$\because \triangle ABC$是等边三角形,$\therefore AB = AC,\angle BAC = 60^{\circ},\angle ACB = 60^{\circ}$。$\because AE// BC,\therefore \angle CAE = \angle ACB = 60^{\circ}$,$\therefore \angle BAD = \angle CAE$,在$\triangle ABD$和$\triangle ACE$中,$\left\{\begin{array}{l} \angle BAD = \angle CAE,\\ AB = AC,\\ \angle ABD = \angle ACE,\end{array}\right. \therefore \triangle ABD\cong \triangle ACE(ASA)$
.
答案: $\because \triangle ABC$是等边三角形,$\therefore AB = AC,\angle ACB = \angle BAC$。$\because AE// BC,\therefore \angle CAE = \angle ACB$,$\therefore \angle BAD = \angle CAE$,在$\triangle ABD$和$\triangle ACE$中,$\left\{\begin{array}{l} \angle BAD = \angle CAE,\\ AB = AC,\\ \angle ABD = \angle ACE,\end{array}\right. \therefore \triangle ABD\cong \triangle ACE(ASA)$。
10. (2024 秋·市中区期末)如图,D,E 分别是 AB,AC 上的点,$AD=AE$,请添加一个条件,使得$△ABE\cong △ACD$.这个条件可以为
$AB = AC$
(只填一个条件即可).
第10题
答案: $AB = AC$,或$\angle AEB = \angle ADC$,或$\angle B = \angle C$。
11. (2024 秋·绵阳期末)如图,在$△ABC$中,D,E 两点分别在 AB,BC 边上,且$BD=BE$,现增加一个条件,使得$△ABE\cong △CBD$一定成立,则该条件可以是下列中的______
①②③
.
①$CE=AD$;②$∠BAC=∠BCA$;③$∠BAE=∠BCD$;④$AE⊥CD$.
第11题
答案: ①②③
12. (2025·扬州模拟)如图,在四边形 ABCD 中,$AB// CD$,在 BD 上取两点 E,F,使$DF=BE$,连接 AE,CF.
(1) 若$AE// CF$,试说明$△ABE\cong △CDF$;
(2) 在(1)的条件下,连接 AF,CE,试判断 AF 与 CE 有怎样的数量关系,并说明理由.
答案:

(1) 证明:$\because AB// CD,\therefore \angle ABD = \angle CDF$。$\because AE// CF,\therefore \angle AEB = \angle CFD$。$\because BF = DE,\therefore BF + EF = DE + EF,\therefore BE = DF$,在$\triangle ABE$和$\triangle CDF$中,$\left\{\begin{array}{l} \angle ABE = \angle CDF,\\ BE = DF,\\ \angle AEB = \angle CFD,\end{array}\right. \therefore \triangle ABE\cong \triangle CDF(ASA)$;
(2) 解:$AF = CE$,理由如下:如图,$\because \triangle ABF\cong \triangle CDE,\therefore AB = CD,AE = CF$,在$\triangle ABF$和$\triangle CDE$中,$\left\{\begin{array}{l} AB = CD,\\ \angle ABD = \angle CDB,\\ BF = DE,\end{array}\right. \therefore \triangle ABF\cong \triangle CDE(SAS),\therefore AF = CE$。
第12题

查看更多完整答案,请扫码查看

关闭