第5页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
14. (2024秋·蚌埠期中)如图,AD和BF分别是△ABC的高和角平分线,AE是边BC的中线.
(1)若△ABE的面积为6,则△ABC的面积为______
(2)若∠C=70°,∠BAC=60°,求∠DAC和∠AFB的度数.
∠DAC的度数为
(1)若△ABE的面积为6,则△ABC的面积为______
12
;(2)若∠C=70°,∠BAC=60°,求∠DAC和∠AFB的度数.
∠DAC的度数为
20°
,∠AFB的度数为95°
.
答案:
(1)
∵ AE 是△ABC 的边 BC 的中线,
∴ BE = CE,
∴ $S_{\triangle ACE}=S_{\triangle ABE}=6$,
∴ $S_{\triangle ABC}=12$,故答案为:12;
(2)
∵ AD 是△ABC 的高,
∴ $∠ADC = 90^{\circ}$.
∵ $∠C = 70^{\circ}$,
∴ $∠DAC = 90^{\circ} - ∠ACD = 90^{\circ} - 70^{\circ} = 20^{\circ}$.
∵ $∠C = 70^{\circ}$,$∠BAC = 60^{\circ}$,
∴ $∠ABC = 180^{\circ} - ∠C - ∠BAC = 180^{\circ} - 70^{\circ} - 60^{\circ} = 50^{\circ}$.
∵ BF 是△ABC 的角平分线,
∴ $∠CBF = \frac{1}{2}∠ABC = 25^{\circ}$,
∴ $∠AFB = ∠CBF + ∠C = 25^{\circ} + 70^{\circ} = 95^{\circ}$.
(1)
∵ AE 是△ABC 的边 BC 的中线,
∴ BE = CE,
∴ $S_{\triangle ACE}=S_{\triangle ABE}=6$,
∴ $S_{\triangle ABC}=12$,故答案为:12;
(2)
∵ AD 是△ABC 的高,
∴ $∠ADC = 90^{\circ}$.
∵ $∠C = 70^{\circ}$,
∴ $∠DAC = 90^{\circ} - ∠ACD = 90^{\circ} - 70^{\circ} = 20^{\circ}$.
∵ $∠C = 70^{\circ}$,$∠BAC = 60^{\circ}$,
∴ $∠ABC = 180^{\circ} - ∠C - ∠BAC = 180^{\circ} - 70^{\circ} - 60^{\circ} = 50^{\circ}$.
∵ BF 是△ABC 的角平分线,
∴ $∠CBF = \frac{1}{2}∠ABC = 25^{\circ}$,
∴ $∠AFB = ∠CBF + ∠C = 25^{\circ} + 70^{\circ} = 95^{\circ}$.
15. (2024春·长安区期末)如图,在△ABC中,BE是角平分线,点D在边AB上(不与点A,B重合),CD与BE交于点O.
(1)若CD是中线,BC=3,AC=2,则△BCD与△ACD的周长差为______
(2)若CD是高,∠ABC=62°,求∠BOC的度数;
(3)若CD是角平分线,∠A=78°,求∠BOC的度数;
(1)若CD是中线,BC=3,AC=2,则△BCD与△ACD的周长差为______
1
;(2)若CD是高,∠ABC=62°,求∠BOC的度数;
∵ BE 是∠ABC 的平分线,$∠ABC = 62^{\circ}$,∴ $∠ABE = \frac{1}{2}∠ABC = \frac{1}{2}×62^{\circ} = 31^{\circ}$. ∵ CD 是△ABC 的高,∴ $∠CDB = 90^{\circ}$,∴ $∠BOC = ∠CDB + ∠ABE = 90^{\circ} + 31^{\circ} = 121^{\circ}$
(3)若CD是角平分线,∠A=78°,求∠BOC的度数;
在△ABC中,$∠A = 78^{\circ}$,∴ $∠ABC + ∠ACB = 180^{\circ} - ∠A = 102^{\circ}$. ∵ BE 是∠ABC 的平分线,CD 是∠ACB 平分线,∴ $∠OBC = \frac{1}{2}∠ABC$,$∠OCB = \frac{1}{2}∠ACB$,∴ $∠OBC + ∠OCB = \frac{1}{2}(∠ABC + ∠ACB) = \frac{1}{2}×102^{\circ} = 51^{\circ}$,∴ $∠BOC = 180^{\circ} - (∠OBC + ∠OCB) = 180^{\circ} - 51^{\circ} = 129^{\circ}$
答案:
(1) 1
(2)
∵ BE 是∠ABC 的平分线,$∠ABC = 62^{\circ}$,
∴ $∠ABE = \frac{1}{2}∠ABC = \frac{1}{2}×62^{\circ} = 31^{\circ}$.
∵ CD 是△ABC 的高,
∴ $∠CDB = 90^{\circ}$,
∴ $∠BOC = ∠CDB + ∠ABE = 90^{\circ} + 31^{\circ} = 121^{\circ}$;
(3) 在△ABC 中,$∠A = 78^{\circ}$,
∴ $∠ABC + ∠ACB = 180^{\circ} - ∠A = 102^{\circ}$.
∵ BE 是∠ABC 的平分线,CD 是∠ACB 平分线,
∴ $∠OBC = \frac{1}{2}∠ABC$,$∠OCB = \frac{1}{2}∠ACB$,
∴ $∠OBC + ∠OCB = \frac{1}{2}(∠ABC + ∠ACB) = \frac{1}{2}×102^{\circ} = 51^{\circ}$,
∴ $∠BOC = 180^{\circ} - (∠OBC + ∠OCB) = 180^{\circ} - 51^{\circ} = 129^{\circ}$.
(1) 1
(2)
∵ BE 是∠ABC 的平分线,$∠ABC = 62^{\circ}$,
∴ $∠ABE = \frac{1}{2}∠ABC = \frac{1}{2}×62^{\circ} = 31^{\circ}$.
∵ CD 是△ABC 的高,
∴ $∠CDB = 90^{\circ}$,
∴ $∠BOC = ∠CDB + ∠ABE = 90^{\circ} + 31^{\circ} = 121^{\circ}$;
(3) 在△ABC 中,$∠A = 78^{\circ}$,
∴ $∠ABC + ∠ACB = 180^{\circ} - ∠A = 102^{\circ}$.
∵ BE 是∠ABC 的平分线,CD 是∠ACB 平分线,
∴ $∠OBC = \frac{1}{2}∠ABC$,$∠OCB = \frac{1}{2}∠ACB$,
∴ $∠OBC + ∠OCB = \frac{1}{2}(∠ABC + ∠ACB) = \frac{1}{2}×102^{\circ} = 51^{\circ}$,
∴ $∠BOC = 180^{\circ} - (∠OBC + ∠OCB) = 180^{\circ} - 51^{\circ} = 129^{\circ}$.
16. 如图,点D是△ABC的边BC上一点,且BD:CD=2:3,点E,F分别是线段AD,CE的中点,且△ABC的面积为20cm².
(1)求△CDE的面积;
(2)求△BEF的面积.

(1)求△CDE的面积;
6cm²
(2)求△BEF的面积.
5cm²
答案:
(1)
∵ △ABD 和△ADC 不等底等高,BD:CD = 2:3,
∴ $S_{\triangle ABD} = \frac{2}{5}S_{\triangle ABC} = 8$,$S_{\triangle ADC} = 20 - 8 = 12$.
∵ 点 E 是 AD 的中点,
∴ $S_{\triangle CDE} = \frac{1}{2}S_{\triangle ADC} = \frac{1}{2}×12 = 6(cm^{2})$
(2)
∵ $S_{\triangle BDE} = \frac{1}{2}S_{\triangle ABD} = \frac{1}{2}×8 = 4$,
∴ $S_{\triangle BCE} = S_{\triangle BDE} + S_{\triangle DCE} = 6 + 4 = 10$.
∵ 点 F 是 CE 的中点,
∴ $S_{\triangle BEF} = \frac{1}{2}S_{\triangle BCE} = \frac{1}{2}×10 = 5(cm^{2})$.
(1)
∵ △ABD 和△ADC 不等底等高,BD:CD = 2:3,
∴ $S_{\triangle ABD} = \frac{2}{5}S_{\triangle ABC} = 8$,$S_{\triangle ADC} = 20 - 8 = 12$.
∵ 点 E 是 AD 的中点,
∴ $S_{\triangle CDE} = \frac{1}{2}S_{\triangle ADC} = \frac{1}{2}×12 = 6(cm^{2})$
(2)
∵ $S_{\triangle BDE} = \frac{1}{2}S_{\triangle ABD} = \frac{1}{2}×8 = 4$,
∴ $S_{\triangle BCE} = S_{\triangle BDE} + S_{\triangle DCE} = 6 + 4 = 10$.
∵ 点 F 是 CE 的中点,
∴ $S_{\triangle BEF} = \frac{1}{2}S_{\triangle BCE} = \frac{1}{2}×10 = 5(cm^{2})$.
查看更多完整答案,请扫码查看