2025年能力素养与学力提升八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年能力素养与学力提升八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年能力素养与学力提升八年级数学上册人教版》

7. 先化简,再求值:
(1) $x(x + 1) - (x + 1)(x - 1)$,其中 $x = 2023$;
(2) $(2x - y)(y + 2x) - (2y + x)(2y - x)$,其中 $x = 1$,$y = 2$;
(3) 已知 $a^2 - b^2 = 4$,$a^2 - c^2 = 2$,求 $(a + b)(a + c)(b + c)(a - b)(a - c)(b - c)$ 的值。
答案: (1)原式$=x+1$,当$x=2023$时,原式$=2024$;(2)原式$=5x^{2}-5y^{2}$,当$x=1$,$y=2$时,原式$=-15$;(3)由$a^{2}-b^{2}=4$,$a^{2}-c^{2}=2$,得$b^{2}-c^{2}=-2$,原式$=(a^{2}-b^{2})(b^{2}-c^{2})(a^{2}-c^{2})=-16$
8. 如图①是边长为 $a$ 的正方形中有一个边长为 $b(b < a)$ 的小正方形。如图②是由图①中的阴影部分拼成的一个长方形。
(1) 设图①中阴影部分的面积为 $S_1$,图②中阴影部分的面积为 $S_2$,则 $S_1 = $
$a^{2}-b^{2}$
,$S_2 = $
$(a+b)(a-b)$
(直接用含 $a$,$b$ 的代数式表示);
(2) 请写出上述过程所揭示的数学公式;
(3) 试利用这个公式计算:$(2 + 1)×(2^2 + 1)×(2^4 + 1)×(2^8 + 1) + 1$。

(2)
$a^{2}-b^{2}=(a+b)(a-b)$

(3)
原式$=(2-1)× (2+1)× (2^{2}+1)× (2^{4}+1)× (2^{8}+1)+1=(2^{2}-1)× (2^{2}+1)× (2^{4}+1)× (2^{8}+1)+1=(2^{4}-1)× (2^{4}+1)× (2^{8}+1)+1=(2^{8}-1)× (2^{8}+1)+1=2^{16}-1+1=2^{16}$
答案: (1)$a^{2}-b^{2}$ $(a+b)(a-b)$;(2)$a^{2}-b^{2}=(a+b)(a-b)$;(3)原式$=(2-1)× (2+1)× (2^{2}+1)× (2^{4}+1)× (2^{8}+1)+1=(2^{2}-1)× (2^{2}+1)× (2^{4}+1)× (2^{8}+1)+1=(2^{4}-1)× (2^{4}+1)× (2^{8}+1)+1=(2^{8}-1)× (2^{8}+1)+1=2^{16}-1+1=2^{16}$

查看更多完整答案,请扫码查看

关闭