2025年全优方案夯实与提高七年级数学上册华师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全优方案夯实与提高七年级数学上册华师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年全优方案夯实与提高七年级数学上册华师大版》

16. 【自贡】如果一个角的度数比它补角的 $2$ 倍多 $30^{\circ}$,那么这个角的度数是(
C
)。
A.$50^{\circ}$
B.$70^{\circ}$
C.$130^{\circ}$
D.$160^{\circ}$
答案: C
17. 【大庆】将两把三角尺的直角顶点重合为如图所示的位置,若$\angle AOD = 108^{\circ}$,则$\angle COB = $
72°

答案: 72°
18. 已知射线 $OC$ 在$\angle AOB$ 的内部。
(1)如图 1,若已知$\angle AOC = 2\angle BOC$,$\angle AOB$ 的补角比$\angle BOC$ 的余角大 $30^{\circ}$。
①求$\angle AOB$ 的度数。
②过点 $O$ 作射线 $OD$,使得$\angle AOC = 3\angle AOD$,求出$\angle COD$ 的度数。
(2)如图 2,若在$\angle AOB$ 的内部作$\angle DOC$,$OE$,$OF$ 分别为$\angle AOD$ 和$\angle BOC$ 的平分线,则$\angle AOB + \angle DOC = 2\angle EOF$,请说明理由。

答案:
(1)①设∠BOC=x,由∠AOC=2∠BOC可得∠AOC=2x,所以∠AOB的补角=180°-3x,∠BOC的余角=90°-x.因为∠AOB的补角比∠BOC的余角大30°,所以180°-3x=90°-x+30°,解得x=30°.所以∠AOB=3x=90°.②因为由①知,x=30°,所以∠AOC=2x=60°.当射线OD在∠AOB的内部时,因为∠AOC=3∠AOD,所以∠COD=$\frac{2}{3}$∠AOC=$\frac{2}{3}×60°=40°$.当射线OD在∠AOB的外部时,因为∠AOC=3∠AOD,所以∠AOD=$\frac{1}{3}$∠AOC=$\frac{1}{3}×60°=20°$.所以∠COD=∠AOD+∠AOC=20°+60°=80°.综上所述,∠COD的度数是40°或80°.
(2)因为OE,OF分别为∠AOD和∠BOC的平分线,所以∠EOD=$\frac{1}{2}$∠AOD,∠COF=$\frac{1}{2}$∠BOC.所以∠EOF=∠DOC+$\frac{1}{2}$(∠AOD+∠BOC).所以2∠EOF=2∠DOC+∠AOD+∠BOC=∠AOB+∠DOC,即∠AOB+∠DOC=2∠EOF.

查看更多完整答案,请扫码查看

关闭