第48页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
1. 一元二次方程$x^{2}+2x - 8 = 0$的根是
$x_{1}=2$,$x_{2}=-4$
,所以抛物线$y = x^{2}+2x - 8$与x轴的公共点坐标是$(2,0)$,$(-4,0)$
.
答案:
$x_{1}=2$,$x_{2}=-4$;$(2,0)$,$(-4,0)$
2. 如图,抛物线$y = ax^{2}+bx + c的对称轴是直线x = 1$. 关于x的方程$ax^{2}+bx + c = 0的一个根为x = 4$,则另一个根为

$x=-2$
.
答案:
$x=-2$
3. 已知二次函数$y = ax^{2}+bx + c$的图象如图所示,利用图象解答下列各题:
(1)方程$ax^{2}+bx + c = 0$的根是
(2)方程$ax^{2}+bx + c = - 3$的根是
(3)方程$ax^{2}+bx + c = 5$的根是
(4)方程$ax^{2}+bx + c = - 4$的根是
(5)方程$ax^{2}+bx + c = - 6$的根的情况是什么?

(1)方程$ax^{2}+bx + c = 0$的根是
$x_{1}=-1$,$x_{2}=3$
;(2)方程$ax^{2}+bx + c = - 3$的根是
$x_{1}=0$,$x_{2}=2$
;(3)方程$ax^{2}+bx + c = 5$的根是
$x_{1}=-2$,$x_{2}=4$
;(4)方程$ax^{2}+bx + c = - 4$的根是
$x_{1}=x_{2}=1$
;(5)方程$ax^{2}+bx + c = - 6$的根的情况是什么?
此方程无实数根.
答案:
解:
(1)$x_{1}=-1$,$x_{2}=3$
(2)$x_{1}=0$,$x_{2}=2$
(3)$x_{1}=-2$,$x_{2}=4$
(4)$x_{1}=x_{2}=1$
(5)此方程无实数根.
(1)$x_{1}=-1$,$x_{2}=3$
(2)$x_{1}=0$,$x_{2}=2$
(3)$x_{1}=-2$,$x_{2}=4$
(4)$x_{1}=x_{2}=1$
(5)此方程无实数根.
4. 二次函数$y = ax^{2}+bx + c$的图象与x轴有一个公共点,则对应的一元二次方程$ax^{2}+bx + c = 0$的根的情况是(
A.没有实数根
B.有两个相等的实数根
C.有两个不相等的实数根
D.无法确定
B
)A.没有实数根
B.有两个相等的实数根
C.有两个不相等的实数根
D.无法确定
答案:
B
5. [2025重庆江津区期中]二次函数$y = x^{2}+2x - 2$的图象与x轴的交点个数是(
A.0
B.1
C.2
D.3
C
)A.0
B.1
C.2
D.3
答案:
C
6. [2024长春中考]若抛物线$y = x^{2}-x + c$(c是常数)与x轴没有交点,则c的取值范围是
$c>\frac{1}{4}$
.
答案:
$c>\frac{1}{4}$
7. 新考法 表格信息法根据下面表格中的对应值,判断方程$ax^{2}+bx + c = 0$($a\neq0$,a,b,c为常数)的一个解x的取值范围是(
|x|3.23|3.24|3.25|3.26|
|$ax^{2}+bx + c$|-0.06|-0.02|0.03|0.09|
A.$3\lt x\lt3.23$
B.$3.23\lt x\lt3.24$
C.$3.24\lt x\lt3.25$
D.$3.25\lt x\lt3.26$
C
)|x|3.23|3.24|3.25|3.26|
|$ax^{2}+bx + c$|-0.06|-0.02|0.03|0.09|
A.$3\lt x\lt3.23$
B.$3.23\lt x\lt3.24$
C.$3.24\lt x\lt3.25$
D.$3.25\lt x\lt3.26$
答案:
C
8. [2025温州鹿城区月考]二次函数$y = ax^{2}+bx + c$的图象如图所示,其对称轴为直线$x = 1$,且与x轴的负半轴交于点A,则关于x的方程$ax^{2}+bx + c = 0$的正数解的取值范围是(

A.$2\lt x\lt3$
B.$3\lt x\lt4$
C.$4\lt x\lt5$
D.$5\lt x\lt6$
C
)A.$2\lt x\lt3$
B.$3\lt x\lt4$
C.$4\lt x\lt5$
D.$5\lt x\lt6$
答案:
C
9. [2025天津期末]已知二次函数$y = ax^{2}+bx + c$($a\neq0$)的图象如图所示,当$y\lt0$时,x的取值范围是(
A.$-1\lt x\lt2$
B.$x\gt2$
C.$x\lt-1$
D.$x\lt-1或x\gt2$
A
)A.$-1\lt x\lt2$
B.$x\gt2$
C.$x\lt-1$
D.$x\lt-1或x\gt2$
答案:
A
查看更多完整答案,请扫码查看