2025年一遍过八年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年一遍过八年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年一遍过八年级数学上册北师大版》


解:将②变形,得4 x+10 y+y= 5,
即2(2 x+5 y)+y= 5。③
把①代入③,得2 × 3+y= 5,解得y= -1。
把y= -1代入①,得2 x-5= 3,解得x= 4。

请你解决以下问题:

解:将②变形,得
3(3x - 2y) + 2y = 19
,③把①代入③,得
3×5 + 2y = 19
,解得
y = 2
。把y= 2代入①,得
3x - 4 = 5
,解得
x = 3
。所以原方程组的解为
$\begin{cases}x = 3,\\y = 2。$$\end{cases}$

2(x^{2} + 4y^{2}) + xy = 36
,所以
xy = 36 - 2(x^{2} + 4y^{2})
。③由①,得
3(x^{2} + 4y^{2}) - 2xy = 47
,④把③代入④,得
3(x^{2} + 4y^{2}) - 2[36 - 2(x^{2} + 4y^{2})] = 47
,所以
x^{2} + 4y^{2} = 17
,把x^{2} + 4y^{2} = 17代入③,得
xy = 2
答案: 解:
(1)将②变形,得$3(3x - 2y) + 2y = 19$,③把①代入③,得$3×5 + 2y = 19$,解得$y = 2$。把$y = 2$代入①,得$3x - 4 = 5$,解得$x = 3$。所以原方程组的解为$\begin{cases}x = 3,\\y = 2。\end{cases}$
(2)由②,得$2(x^{2} + 4y^{2}) + xy = 36$,所以$xy = 36 - 2(x^{2} + 4y^{2})$。③由①,得$3(x^{2} + 4y^{2}) - 2xy = 47$,④把③代入④,得$3(x^{2} + 4y^{2}) - 2[36 - 2(x^{2} + 4y^{2})] = 47$,所以$x^{2} + 4y^{2} = 17$,把$x^{2} + 4y^{2} = 17$代入③,得$xy = 2$。
6 [2024揭阳月考]【阅读材料】小明同学在解方程组$\left\{\begin{array}{l}\frac{2 x+3 y}{4}+\frac{2 x-3 y}{3}= 7, \\ \frac{2 x+3 y}{3}+\frac{2 x-3 y}{2}= 8\end{array}\right.$时,发现如果直接用代入消元法或加减消元法求解,运算量都比较大。聪明的他想到如果把方程组中的$(2 x+3 y)$看作一个数,把$(2 x-3 y)$看作另一个数,通过换元,可以简化运算。以下是他的解题过程:令$m= 2 x+3 y$,$n= 2 x-3 y$,则原方程组可化为$\left\{\begin{array}{l}\frac{m}{4}+\frac{n}{3}= 7, \\ \frac{m}{3}+\frac{n}{2}= 8,\end{array}\right.解得\left\{\begin{array}{l}m= 60, \\ n= -24 。\end{array}\right.$所以$\left\{\begin{array}{l}2 x+3 y= 60, \\ 2 x-3 y= -24,\end{array}\right.解得\left\{\begin{array}{l}x= 9, \\ y= 14,\end{array}\right.$所以原方程组的解为$\left\{\begin{array}{l}x= 9, \\ y= 14 。\end{array}\right.$【解决问题】请你参考小明同学的做法,解方程组:$\left\{\begin{array}{l}\frac{x+y}{3}+\frac{x-y}{5}= 2, \\ \frac{x+y}{3}-\frac{x-y}{5}= -1 。\end{array}\right.$
解:令
$m = \frac{x + y}{3}$,$n = \frac{x - y}{5}$
,则原方程组可化为
$\begin{cases}m + n = 2,\\m - n = -1,\end{cases}$
解得
$\begin{cases}m = \frac{1}{2},\\n = \frac{3}{2},\end{cases}$
所以
$\begin{cases}\frac{x + y}{3} = \frac{1}{2},\\frac{x - y}{5} = \frac{3}{2},\end{cases}$
解得
$\begin{cases}x = \frac{9}{2},\\y = -3,\end{cases}$
所以原方程组的解为
$\begin{cases}x = \frac{9}{2},\\y = -3。\end{cases}$
答案: 解:令$m = \frac{x + y}{3}$,$n = \frac{x - y}{5}$,则原方程组可化为$\begin{cases}m + n = 2,\\m - n = -1,\end{cases}$解得$\begin{cases}m = \frac{1}{2},\\n = \frac{3}{2},\end{cases}$所以$\begin{cases}\frac{x + y}{3} = \frac{1}{2},\\frac{x - y}{5} = \frac{3}{2},\end{cases}$解得$\begin{cases}x = \frac{9}{2},\\y = -3,\end{cases}$所以原方程组的解为$\begin{cases}x = \frac{9}{2},\\y = -3。\end{cases}$

查看更多完整答案,请扫码查看

关闭