2025年一遍过八年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年一遍过八年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年一遍过八年级数学上册北师大版》

1 解下列方程组:
(1) 一题多解 $\left\{\begin{array}{l}2 x+y= 2, \\ 8 x+3 y= 9 ;\end{array}\right.$
$\begin{cases}x = \frac{3}{2},\\y = -1\end{cases}$
(2) $\left\{\begin{array}{l}2 x+5 y= -10, \\ 5 x-3 y= 6 ;\end{array}\right.$
$\begin{cases}x = 0,\\y = -2\end{cases}$

(3) $\left\{\begin{array}{l}x-3 y= -4, \\ \frac{x+1}{2}+y= 1 ;\end{array}\right.$
$\begin{cases}x = -1,\\y = 1\end{cases}$
(4) $\left\{\begin{array}{l}\frac{x-2}{2}-\frac{5-y}{3}= 1, \\ \frac{x}{0.2}-\frac{y+1}{0.3}= 5 。\end{array}\right.$
$\begin{cases}x = \frac{9}{2},\\y = \frac{17}{4}\end{cases}$
答案: 解:
(1)$\begin{cases}2x + y = 2,①\\8x + 3y = 9,②\end{cases}$通解(加减消元法) ② - ①×3,得$2x = 3$,解得$x = \frac{3}{2}$。把$x = \frac{3}{2}$代入①,得$2×\frac{3}{2} + y = 2$,解得$y = -1$。所以原方程组的解为$\begin{cases}x = \frac{3}{2},\\y = -1。\end{cases}$另解(代入消元法) 由①,得$y = 2 - 2x$,③把③代入②,得$8x + 3(2 - 2x) = 9$,解得$x = \frac{3}{2}$。把$x = \frac{3}{2}$代入③,得$y = -1$。所以原方程组的解为$\begin{cases}x = \frac{3}{2},\\y = -1。\end{cases}$
(2)$\begin{cases}2x + 5y = -10,①\\5x - 3y = 6,②\end{cases}$①×3 + ②×5,得$31x = 0$,解得$x = 0$。把$x = 0$代入②,得$-3y = 6$,解得$y = -2$。所以原方程组的解为$\begin{cases}x = 0,\\y = -2。\end{cases}$
(3)将原方程组整理,得$\begin{cases}x - 3y = -4,①\\x + 2y = 1,②\end{cases}$② - ①,得$5y = 5$,解得$y = 1$。把$y = 1$代入①,得$x - 3 = -4$,解得$x = -1$。所以原方程组的解为$\begin{cases}x = -1,\\y = 1。\end{cases}$
(4)将原方程组化简,得$\begin{cases}3x + 2y = 22,①\\3x - 2y = 5,②\end{cases}$① + ②,得$6x = 27$,解得$x = \frac{9}{2}$。把$x = \frac{9}{2}$代入②,得$3×\frac{9}{2} - 2y = 5$,解得$y = \frac{17}{4}$。所以原方程组的解为$\begin{cases}x = \frac{9}{2},\\y = \frac{17}{4}。\end{cases}$
解方程组:$\left\{\begin{array}{l}13 x+14 y= 40, \\ 14 x+13 y= 41 。\end{array}\right.$
解:$\begin{cases}13x + 14y = 40,①\\14x + 13y = 41,②\end{cases}$① + ②,得$27x + 27y = 81$,即$x + y = 3$,③① - ②,得$-x + y = -1$,④③ + ④,得$2y = 2$,解得$y = $
1
。把$y = $
1
代入③,得$x = $
2
。所以原方程组的解为$\begin{cases}x =
2
,\\y =
1
。\end{cases}$
答案: 解:$\begin{cases}13x + 14y = 40,①\\14x + 13y = 41,②\end{cases}$① + ②,得$27x + 27y = 81$,即$x + y = 3$,③① - ②,得$-x + y = -1$,④③ + ④,得$2y = 2$,解得$y = 1$。把$y = 1$代入③,得$x = 2$。所以原方程组的解为$\begin{cases}x = 2,\\y = 1。\end{cases}$
解方程组:$\left\{\begin{array}{l}20 x+19 y= 17, \\ 17 x+16 y= 14 。\end{array}\right.$
解:$\begin{cases}20x + 19y = 17,①\\17x + 16y = 14,②\end{cases}$① - ②,得
3x + 3y = 3
,所以
x + y = 1
,③③×16,得
16x + 16y = 16
,④② - ④,得
x = -2
,把
x = -2
代入③,得
y = 3
。所以方程组的解为
$\begin{cases}x = -2,\\y = 3。\end{cases}$
答案: 解:$\begin{cases}20x + 19y = 17,①\\17x + 16y = 14,②\end{cases}$① - ②,得$3x + 3y = 3$,所以$x + y = 1$,③③×16,得$16x + 16y = 16$,④② - ④,得$x = -2$,把$x = -2$代入③,得$y = 3$。所以方程组的解为$\begin{cases}x = -2,\\y = 3。\end{cases}$
4 解下列方程组:
(1) $\left\{\begin{array}{l}\frac{2}{3}(2 x+y)= 4, \\ \frac{3}{4} x+\frac{5}{6}(2 x+y)= 8 ;\end{array}\right.$
解:$\begin{cases}\frac{2}{3}(2x + y) = 4,①\\frac{3}{4}x + \frac{5}{6}(2x + y) = 8,②\end{cases}$由①,得$2x + y =$
6
,③把③代入②,得$\frac{3}{4}x + \frac{5}{6}×6 = 8$,解得$x =$
4
。把$x = 4$代入③,得$8 + y = 6$,解得$y =$
-2
。所以原方程组的解为$\begin{cases}x =$
4
,\\y =$
-2
。\end{cases}$
(2) $\left\{\begin{array}{l}3 x+2 y-2= 0, \\ \frac{3 x+2 y+1}{5}-2 x= -\frac{2}{5} 。\end{array}\right.$
解:$\begin{cases}3x + 2y - 2 = 0,①\\frac{3x + 2y + 1}{5} - 2x = -\frac{2}{5},②\end{cases}$由①,得$3x + 2y =$
2
,③把③代入②,得$\frac{3}{5} - 2x = -\frac{2}{5}$,解得$x =$
$\frac{1}{2}$
。把$x = \frac{1}{2}$代入③,得$\frac{3}{2} + 2y = 2$,解得$y =$
$\frac{1}{4}$
。所以原方程组的解为$\begin{cases}x =$
$\frac{1}{2}$
,\\y =$
$\frac{1}{4}$
。\end{cases}$
答案: 解:
(1)$\begin{cases}\frac{2}{3}(2x + y) = 4,①\\\frac{3}{4}x + \frac{5}{6}(2x + y) = 8,②\end{cases}$由①,得$2x + y = 6$,③把③代入②,得$\frac{3}{4}x + \frac{5}{6}×6 = 8$,解得$x = 4$。把$x = 4$代入③,得$8 + y = 6$,解得$y = -2$。所以原方程组的解为$\begin{cases}x = 4,\\y = -2。\end{cases}$
(2)$\begin{cases}3x + 2y - 2 = 0,①\\\frac{3x + 2y + 1}{5} - 2x = -\frac{2}{5},②\end{cases}$由①,得$3x + 2y = 2$,③把③代入②,得$\frac{3}{5} - 2x = -\frac{2}{5}$,解得$x = \frac{1}{2}$。把$x = \frac{1}{2}$代入③,得$\frac{3}{2} + 2y = 2$,解得$y = \frac{1}{4}$。所以原方程组的解为$\begin{cases}x = \frac{1}{2},\\y = \frac{1}{4}。\end{cases}$

查看更多完整答案,请扫码查看

关闭