2025年全品基础小练习高考数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全品基础小练习高考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第82页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
1.(15分)已知等比数列$\{a_{n}\}$的前$n$项和为$S_{n}$,公比$q > 1$,且$a_{2}=8$,$S_{3}=28$.
(1)求$\{a_{n}\}$的通项公式;
(2)证明:$a_{n}^{2}>S_{n}+7$.
(1)求$\{a_{n}\}$的通项公式;
(2)证明:$a_{n}^{2}>S_{n}+7$.
答案:
$解:(1)由a_2=8,S_3=28,$
$\begin{cases}{a_1q=8 } \\ {a_1+a_1q+a_1q²=28} \end{cases}$
$解得a_1=4,q=2或a_1=16,q=\frac{1}{2}(舍去)$
$∴a_n=2^{n+1}$
$(2)∵S_n=\frac{4(1-2^n)}{1-2}=2^{n+1}-4$
$∴a²_n-S_n-7=(2^{n+1})²-2×2^{n+1}-3=(2^{n+1}-3)(2^{n+1}+1)>0$
$∴a²_n>S_n+7$
$\begin{cases}{a_1q=8 } \\ {a_1+a_1q+a_1q²=28} \end{cases}$
$解得a_1=4,q=2或a_1=16,q=\frac{1}{2}(舍去)$
$∴a_n=2^{n+1}$
$(2)∵S_n=\frac{4(1-2^n)}{1-2}=2^{n+1}-4$
$∴a²_n-S_n-7=(2^{n+1})²-2×2^{n+1}-3=(2^{n+1}-3)(2^{n+1}+1)>0$
$∴a²_n>S_n+7$
2.(15分)设$S_{n}$为数列$\{a_{n}\}$的前$n$项和,已知$a_{2}=1$,$2S_{n}=na_{n}$.
(1)求$\{a_{n}\}$的通项公式;
(2)求数列$\{\frac{a_{n + 1}}{2^{n}}\}$的前$n$项和$T_{n}$.
(1)求$\{a_{n}\}$的通项公式;
(2)求数列$\{\frac{a_{n + 1}}{2^{n}}\}$的前$n$项和$T_{n}$.
答案:
$2. 解: (1)因为2S_{n}=na_{n},$
$所以当n = 1时,2a_{1}=a_{1},即a_{1}=0。$
$当n\geq2时,2S_{n - 1}=(n - 1)a_{n - 1},$
$所以2(S_{n}-S_{n - 1})=na_{n}-(n - 1)a_{n - 1}=2a_{n}(n\geq2)$,
$化简得(n - 2)a_{n}=(n - 1)a_{n - 1}(n\geq2),$
$所以当n\geq3时,\frac{a_{n}}{n - 1}=\frac{a_{n - 1}}{n - 2}=\cdots=\frac{a_{3}}{2}=\frac{a_{2}}{1}=1$
$即a_{n}=n - 1。$
$当n = 1或2时,上式均成立,$
$所以a_{n}=n - 1(n\in N^{*})$
$(2)因为\frac{a_{n}}{2^{n - 1}}=\frac{n - 1}{2^{n - 1}},$
$所以T_{n}=1\times(\frac{1}{2})^{1}+2\times(\frac{1}{2})^{2}+3\times(\frac{1}{2})^{3}+\cdots +n\times(\frac{1}{2})^{n},$
$\frac{1}{2}T_{n}=1\times(\frac{1}{2})^{2}+2\times(\frac{1}{2})^{3}+\cdots+(n - 1)\times(\frac{1}{2})^{n}+n\times(\frac{1}{2})^{n + 1},$
$两式相减得\frac{1}{2}T_{n}=(\frac{1}{2})^{1}+(\frac{1}{2})^{2}+(\frac{1}{2})^{3}+\cdots+(\frac{1}{2})^{n}-n\times(\frac{1}{2})^{n + 1}=\frac{\frac{1}{2}\times[1 - (\frac{1}{2})^{n}]}{1-\frac{1}{2}}-n\times(\frac{1}{2})^{n + 1}=1-(\frac{1}{2})^{n}(1+\frac{n}{2}),$
$即T_{n}=2-(\frac{1}{2})^{n}(2 + n),n\in N^{*})。$
$所以当n = 1时,2a_{1}=a_{1},即a_{1}=0。$
$当n\geq2时,2S_{n - 1}=(n - 1)a_{n - 1},$
$所以2(S_{n}-S_{n - 1})=na_{n}-(n - 1)a_{n - 1}=2a_{n}(n\geq2)$,
$化简得(n - 2)a_{n}=(n - 1)a_{n - 1}(n\geq2),$
$所以当n\geq3时,\frac{a_{n}}{n - 1}=\frac{a_{n - 1}}{n - 2}=\cdots=\frac{a_{3}}{2}=\frac{a_{2}}{1}=1$
$即a_{n}=n - 1。$
$当n = 1或2时,上式均成立,$
$所以a_{n}=n - 1(n\in N^{*})$
$(2)因为\frac{a_{n}}{2^{n - 1}}=\frac{n - 1}{2^{n - 1}},$
$所以T_{n}=1\times(\frac{1}{2})^{1}+2\times(\frac{1}{2})^{2}+3\times(\frac{1}{2})^{3}+\cdots +n\times(\frac{1}{2})^{n},$
$\frac{1}{2}T_{n}=1\times(\frac{1}{2})^{2}+2\times(\frac{1}{2})^{3}+\cdots+(n - 1)\times(\frac{1}{2})^{n}+n\times(\frac{1}{2})^{n + 1},$
$两式相减得\frac{1}{2}T_{n}=(\frac{1}{2})^{1}+(\frac{1}{2})^{2}+(\frac{1}{2})^{3}+\cdots+(\frac{1}{2})^{n}-n\times(\frac{1}{2})^{n + 1}=\frac{\frac{1}{2}\times[1 - (\frac{1}{2})^{n}]}{1-\frac{1}{2}}-n\times(\frac{1}{2})^{n + 1}=1-(\frac{1}{2})^{n}(1+\frac{n}{2}),$
$即T_{n}=2-(\frac{1}{2})^{n}(2 + n),n\in N^{*})。$
3.(15分)已知数列$\{a_{n}\}$满足$\frac{1}{a_{n}}-\frac{1}{a_{n + 1}}=\frac{2n + 1}{a_{n}a_{n + 1}}$,且$a_{1}=1$.
(1)求数列$\{a_{n}\}$的通项公式;
(2)若数列$\{b_{n}\}$满足$b_{n}=\frac{2}{a_{n}}$,记数列$\{b_{n}\}$的前$n$项和为$T_{n}$,求证:$T_{n}<4$.
(1)求数列$\{a_{n}\}$的通项公式;
(2)若数列$\{b_{n}\}$满足$b_{n}=\frac{2}{a_{n}}$,记数列$\{b_{n}\}$的前$n$项和为$T_{n}$,求证:$T_{n}<4$.
答案:
$3. 解: (1)由题可得a_{n + 1}-a_{n}=2n + 1,$
$则a_{n}-a_{n - 1}=2(n - 1)+1,\cdots,a_{2}-a_{1}=2\times1 + 1,$
$将这n个式子相加,可得a_{n + 1}-1=2(n + n - 1+\cdots+1)+n,$
$故a_{n + 1}=2\times\frac{n(n + 1)}{2}+n + 1=(n + 1)^{2},$
$所以a_{n}=n^{2}(n\geq2),$
$又a_{1}=1满足上式,$
$所以a_{n}=n^{2}。$
$(2)证明:由题可得,b_{n}=\frac{2}{n^{2}},$
$当n = 1时,T_{1}=b_{1}=2<4。$
$当n\geq2时,\frac{2}{n^{2}}<\frac{2}{n(n - 1)}=2(\frac{1}{n - 1}-\frac{1}{n})$
$所以当n\geq2时,T_{n}<2+2(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{n - 1}-\frac{1}{n})=2+2(1-\frac{1}{n})<4。$
$综上,T_{n}<4。$
$则a_{n}-a_{n - 1}=2(n - 1)+1,\cdots,a_{2}-a_{1}=2\times1 + 1,$
$将这n个式子相加,可得a_{n + 1}-1=2(n + n - 1+\cdots+1)+n,$
$故a_{n + 1}=2\times\frac{n(n + 1)}{2}+n + 1=(n + 1)^{2},$
$所以a_{n}=n^{2}(n\geq2),$
$又a_{1}=1满足上式,$
$所以a_{n}=n^{2}。$
$(2)证明:由题可得,b_{n}=\frac{2}{n^{2}},$
$当n = 1时,T_{1}=b_{1}=2<4。$
$当n\geq2时,\frac{2}{n^{2}}<\frac{2}{n(n - 1)}=2(\frac{1}{n - 1}-\frac{1}{n})$
$所以当n\geq2时,T_{n}<2+2(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{n - 1}-\frac{1}{n})=2+2(1-\frac{1}{n})<4。$
$综上,T_{n}<4。$
4.(15分)已知$\{a_{n}\}$为等差数列,$b_{n}=\begin{cases}a_{n}-6,n为奇数,\\2a_{n},n为偶数.\end{cases}$记$S_{n}$,$T_{n}$分别为数列$\{a_{n}\}$,$\{b_{n}\}$的前$n$项和,$S_{4}=32$,$T_{3}=16$.
(1)求$\{a_{n}\}$的通项公式;
(2)证明:当$n > 5$时,$T_{n}>S_{n}$.
(1)求$\{a_{n}\}$的通项公式;
(2)证明:当$n > 5$时,$T_{n}>S_{n}$.
答案:
$4. 解: (1)设数列a_{n}的公差为d,$
$\because T_{3}=b_{1}+b_{2}+b_{3}=a_{1}-6 + 2a_{2}+a_{3}-6=4a_{2}-12 = 16,$
$\therefore a_{2}=a_{1}+d = 7,又S_{4}=4a_{1}+\frac{4\times3}{2}d = 32,$
$即a_{1}+\frac{3}{2}d = 8,$
$\therefore a_{1}=5,d = 2,\therefore a_{n}=a_{1}+(n - 1)d=2n + 3。$
$(2)证明:由(1)可得S_{n}=na_{1}+\frac{n(n - 1)}{2}d=n^{2}+4n。$
$当n为偶数时,T_{n}=(b_{1}+b_{3}+\cdots+b_{n - 1})+(b_{2}+b_{4}+\cdots+b_{n})=(a_{1}-6 + a_{3}-6+\cdots+a_{n - 1}-6)+(2a_{2}+2a_{4}+\cdots+2a_{n})=(5 + 9+\cdots+2n + 1-3n)+2\times(7 + 11+\cdots+2n + 3)=\frac{(5 + 2n + 1)\cdot\frac{n}{2}}{2}-3n+2\times\frac{(7 + 2n + 3)\cdot\frac{n}{2}}{2}=\frac{3}{2}n^{2}+\frac{7}{2}n,$
$当n>5且n为偶数时,T_{n}-S_{n}=\frac{3}{2}n^{2}+\frac{7}{2}n-(n^{2}+4n)=\frac{1}{2}n^{2}-\frac{1}{2}n=\frac{1}{2}n(n - 1)>0,$
$即T_{n}>S_{n};$
$当n为奇数且n\geq3时,T_{n}=T_{n - 1}+b_{n}=\frac{3}{2}(n - 1)^{2}+\frac{7}{2}(n - 1)+2n + 3-6=\frac{3}{2}n^{2}+\frac{5}{2}n-5,$
$当n>5且n为奇数时,T_{n}-S_{n}=\frac{3}{2}n^{2}+\frac{5}{2}n-5-(n^{2}+4n)=\frac{1}{2}n^{2}-\frac{3}{2}n-5=\frac{1}{2}(n^{2}-3n - 10)=\frac{1}{2}(n + 2)(n - 5)>0,$
$即T_{n}>S_{n}。$
$综上,当n>5时,T_{n}>S_{n}。$
$\because T_{3}=b_{1}+b_{2}+b_{3}=a_{1}-6 + 2a_{2}+a_{3}-6=4a_{2}-12 = 16,$
$\therefore a_{2}=a_{1}+d = 7,又S_{4}=4a_{1}+\frac{4\times3}{2}d = 32,$
$即a_{1}+\frac{3}{2}d = 8,$
$\therefore a_{1}=5,d = 2,\therefore a_{n}=a_{1}+(n - 1)d=2n + 3。$
$(2)证明:由(1)可得S_{n}=na_{1}+\frac{n(n - 1)}{2}d=n^{2}+4n。$
$当n为偶数时,T_{n}=(b_{1}+b_{3}+\cdots+b_{n - 1})+(b_{2}+b_{4}+\cdots+b_{n})=(a_{1}-6 + a_{3}-6+\cdots+a_{n - 1}-6)+(2a_{2}+2a_{4}+\cdots+2a_{n})=(5 + 9+\cdots+2n + 1-3n)+2\times(7 + 11+\cdots+2n + 3)=\frac{(5 + 2n + 1)\cdot\frac{n}{2}}{2}-3n+2\times\frac{(7 + 2n + 3)\cdot\frac{n}{2}}{2}=\frac{3}{2}n^{2}+\frac{7}{2}n,$
$当n>5且n为偶数时,T_{n}-S_{n}=\frac{3}{2}n^{2}+\frac{7}{2}n-(n^{2}+4n)=\frac{1}{2}n^{2}-\frac{1}{2}n=\frac{1}{2}n(n - 1)>0,$
$即T_{n}>S_{n};$
$当n为奇数且n\geq3时,T_{n}=T_{n - 1}+b_{n}=\frac{3}{2}(n - 1)^{2}+\frac{7}{2}(n - 1)+2n + 3-6=\frac{3}{2}n^{2}+\frac{5}{2}n-5,$
$当n>5且n为奇数时,T_{n}-S_{n}=\frac{3}{2}n^{2}+\frac{5}{2}n-5-(n^{2}+4n)=\frac{1}{2}n^{2}-\frac{3}{2}n-5=\frac{1}{2}(n^{2}-3n - 10)=\frac{1}{2}(n + 2)(n - 5)>0,$
$即T_{n}>S_{n}。$
$综上,当n>5时,T_{n}>S_{n}。$
查看更多完整答案,请扫码查看