2025年全品基础小练习高考数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全品基础小练习高考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第14页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
1. 设全集$U = \mathbf{R}$,集合$A = \{ x\mid - 1\leqslant x\leqslant 1\}$,$B = \{ - 2,- 1,0,1,2\}$,则$(\complement_{U}A)\cap B =$( )
A. $\{ 2\}$
B. $\{ - 2,2\}$
C. $\{ - 1,0,1\}$
D. $\{ 0,1,2\}$
A. $\{ 2\}$
B. $\{ - 2,2\}$
C. $\{ - 1,0,1\}$
D. $\{ 0,1,2\}$
答案:
B
2. 已知命题$p:\exists x\gt 1$,$x^{2}+1\gt 0$,则命题$p$的否定是( )
A. $\forall x\gt 1$,$x^{2}+1\gt 0$
B. $\forall x\gt 1$,$x^{2}+1\leqslant 0$
C. $\exists x\gt 1$,$x^{2}+1\leqslant 0$
D. $\exists x\leqslant 1$,$x^{2}+1\leqslant 0$
A. $\forall x\gt 1$,$x^{2}+1\gt 0$
B. $\forall x\gt 1$,$x^{2}+1\leqslant 0$
C. $\exists x\gt 1$,$x^{2}+1\leqslant 0$
D. $\exists x\leqslant 1$,$x^{2}+1\leqslant 0$
答案:
B
3. 已知函数$y = f(x)$的定义域为$\mathbf{R}$,则“$y = f(x)$是偶函数”是“$y = |f(x)|$是偶函数”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
答案:
A
4. 已知函数$f(x)=\ln|x|-\frac{1}{\ln|x|}$,则下列说法正确的是( )
A. $f(x)$是奇函数,且在$(0,1)$上单调递减
B. $f(x)$是奇函数,且在$(0,+\infty)$上单调递增
C. $f(x)$是偶函数,且在$(0,+\infty)$上单调递增
D. $f(x)$是偶函数,且在$(-\infty,-1)$上单调递减
A. $f(x)$是奇函数,且在$(0,1)$上单调递减
B. $f(x)$是奇函数,且在$(0,+\infty)$上单调递增
C. $f(x)$是偶函数,且在$(0,+\infty)$上单调递增
D. $f(x)$是偶函数,且在$(-\infty,-1)$上单调递减
答案:
D
5. 已知正实数$a$,$b$满足$a + 4b = ab$,则$a + b$的最小值为( )
A. 4
B. 9
C. 10
D. 20
A. 4
B. 9
C. 10
D. 20
答案:
B
6. 已知幂函数$f(x)=x^{\alpha}$的图象过点$(3,\frac{1}{3})$,则函数$g(x)=(2x - 1)f(x)$在区间$[\frac{1}{2},2]$上的最小值是( )
A. -1
B. 0
C. -2
D. $\frac{3}{2}$
A. -1
B. 0
C. -2
D. $\frac{3}{2}$
答案:
B
7. 已知函数$f(x)=\begin{cases}\sqrt{x},x\gt 0,\\\frac{1}{2}x + 1,x\leqslant 0,\end{cases}$若$m\lt n$,$f(n)=f(m)$,则$n - m$的取值范围是( )
A. $(1,2]$
B. $[1,2)$
C. $(\frac{3}{4},2]$
D. $[\frac{3}{4},2)$
A. $(1,2]$
B. $[1,2)$
C. $(\frac{3}{4},2]$
D. $[\frac{3}{4},2)$
答案:
B
8. 已知$f(x)$为偶函数,且函数$g(x)=xf(x)$在$[0,+\infty)$上单调递减,则不等式$(1 - x)f(x - 1)+2xf(2x)\gt 0$的解集为( )
A. $(-\infty,\frac{1}{3})$
B. $(-\infty,-1)$
C. $(\frac{1}{3},+\infty)$
D. $(-1,+\infty)$
A. $(-\infty,\frac{1}{3})$
B. $(-\infty,-1)$
C. $(\frac{1}{3},+\infty)$
D. $(-1,+\infty)$
答案:
B
查看更多完整答案,请扫码查看