2025年全品基础小练习高考数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全品基础小练习高考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第80页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
1.(13分)已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$a_{1}=2$,$S_{n}=\lambda a_{n + 1}-1$,其中$\lambda$是不为0的常数.
(1)求$a_{2}$,$a_{3}$;
(2)确定$\lambda$的值,使得$\{ a_{n}\}$为等比数列,并证明.
(1)求$a_{2}$,$a_{3}$;
(2)确定$\lambda$的值,使得$\{ a_{n}\}$为等比数列,并证明.
答案:
解:
(1)由题意,数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$a_{1}=2$,$S_{n}=\lambda a_{n + 1}-1$,当$n = 1$时,$S_{1}=a_{1}=\lambda a_{2}-1$,解得$a_{2}=\frac{3}{\lambda}$.
当$n = 2$时,$S_{2}=a_{1}+a_{2}=2+\frac{3}{\lambda}=\lambda a_{3}-1$,解得$a_{3}=\frac{3}{\lambda}+\frac{3}{\lambda^{2}}$.
(2)当数列$\{ a_{n}\}$为等比数列时,$a_{2}^{2}=a_{1}\cdot a_{3}$,即$(\frac{3}{\lambda})^{2}=2(\frac{3}{\lambda}+\frac{3}{\lambda^{2}})$,解得$\lambda=\frac{1}{2}$.
证明如下:当$\lambda=\frac{1}{2}$时,$S_{n}=\frac{1}{2}a_{n + 1}-1$①,当$n\geq2$时,$S_{n - 1}=\frac{1}{2}a_{n}-1$②,①$-$②得$a_{n}=\frac{1}{2}a_{n + 1}-\frac{1}{2}a_{n}(n\geq2)$,整理得$a_{n + 1}=3a_{n}(n\geq2)$,即$\frac{a_{n + 1}}{a_{n}} = 3(n\geq2)$,又$a_{2}=6$,$a_{1}=2$,所以$\frac{a_{2}}{a_{1}} = 3$,故数列$\{ a_{n}\}$是以$2$为首项,以$3$为公比的等比数列.
(1)由题意,数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$a_{1}=2$,$S_{n}=\lambda a_{n + 1}-1$,当$n = 1$时,$S_{1}=a_{1}=\lambda a_{2}-1$,解得$a_{2}=\frac{3}{\lambda}$.
当$n = 2$时,$S_{2}=a_{1}+a_{2}=2+\frac{3}{\lambda}=\lambda a_{3}-1$,解得$a_{3}=\frac{3}{\lambda}+\frac{3}{\lambda^{2}}$.
(2)当数列$\{ a_{n}\}$为等比数列时,$a_{2}^{2}=a_{1}\cdot a_{3}$,即$(\frac{3}{\lambda})^{2}=2(\frac{3}{\lambda}+\frac{3}{\lambda^{2}})$,解得$\lambda=\frac{1}{2}$.
证明如下:当$\lambda=\frac{1}{2}$时,$S_{n}=\frac{1}{2}a_{n + 1}-1$①,当$n\geq2$时,$S_{n - 1}=\frac{1}{2}a_{n}-1$②,①$-$②得$a_{n}=\frac{1}{2}a_{n + 1}-\frac{1}{2}a_{n}(n\geq2)$,整理得$a_{n + 1}=3a_{n}(n\geq2)$,即$\frac{a_{n + 1}}{a_{n}} = 3(n\geq2)$,又$a_{2}=6$,$a_{1}=2$,所以$\frac{a_{2}}{a_{1}} = 3$,故数列$\{ a_{n}\}$是以$2$为首项,以$3$为公比的等比数列.
2.(13分)记$S_{n}$为等差数列$\{ a_{n}\}$的前$n$项和,已知$a_{2}=11$,$S_{10}=40$.
(1)求$\{ a_{n}\}$的通项公式;
(2)求数列$\{ |a_{n}|\}$的前$n$项和$T_{n}$.
(1)求$\{ a_{n}\}$的通项公式;
(2)求数列$\{ |a_{n}|\}$的前$n$项和$T_{n}$.
答案:
解:
(1)设等差数列$\{ a_{n}\}$的公差为$d$,
则由题可得$\begin{cases}a_{2}=a_{1}+d = 11\\S_{10}=10a_{1}+\frac{10\times9}{2}d = 40\end{cases}$,即$\begin{cases}a_{1}+d = 11\\2a_{1}+9d = 8\end{cases}$,解得$\begin{cases}a_{1}=13\\d = - 2\end{cases}$,
所以$a_{n}=13 - 2(n - 1)=15 - 2n$.
(2)由
(1)可知$S_{n}=\frac{n(13 + 15 - 2n)}{2}=14n - n^{2}$.
令$a_{n}=15 - 2n\gt0$,解得$n\lt\frac{15}{2}$,所以当$n\leq7$,且$n\in N^{*}$时,$a_{n}\gt0$,此时$T_{n}=|a_{1}|+|a_{2}|+\cdots+|a_{n}|=a_{1}+a_{2}+\cdots+a_{n}=S_{n}=14n - n^{2}$;当$n\geq8$,且$n\in N^{*}$时,$a_{n}\lt0$,此时$T_{n}=|a_{1}|+|a_{2}|+\cdots+|a_{n}|=(a_{1}+a_{2}+\cdots+a_{7})-(a_{8}+a_{9}+\cdots+a_{n})=S_{7}-(S_{n}-S_{7})=2S_{7}-S_{n}=2\times(14\times7 - 7^{2})-(14n - n^{2})=n^{2}-14n + 98$.综上所述,$T_{n}=\begin{cases}14n - n^{2},n\leq7,n\in N^{*}\\n^{2}-14n + 98,n\geq8,n\in N^{*}\end{cases}$.
(1)设等差数列$\{ a_{n}\}$的公差为$d$,
则由题可得$\begin{cases}a_{2}=a_{1}+d = 11\\S_{10}=10a_{1}+\frac{10\times9}{2}d = 40\end{cases}$,即$\begin{cases}a_{1}+d = 11\\2a_{1}+9d = 8\end{cases}$,解得$\begin{cases}a_{1}=13\\d = - 2\end{cases}$,
所以$a_{n}=13 - 2(n - 1)=15 - 2n$.
(2)由
(1)可知$S_{n}=\frac{n(13 + 15 - 2n)}{2}=14n - n^{2}$.
令$a_{n}=15 - 2n\gt0$,解得$n\lt\frac{15}{2}$,所以当$n\leq7$,且$n\in N^{*}$时,$a_{n}\gt0$,此时$T_{n}=|a_{1}|+|a_{2}|+\cdots+|a_{n}|=a_{1}+a_{2}+\cdots+a_{n}=S_{n}=14n - n^{2}$;当$n\geq8$,且$n\in N^{*}$时,$a_{n}\lt0$,此时$T_{n}=|a_{1}|+|a_{2}|+\cdots+|a_{n}|=(a_{1}+a_{2}+\cdots+a_{7})-(a_{8}+a_{9}+\cdots+a_{n})=S_{7}-(S_{n}-S_{7})=2S_{7}-S_{n}=2\times(14\times7 - 7^{2})-(14n - n^{2})=n^{2}-14n + 98$.综上所述,$T_{n}=\begin{cases}14n - n^{2},n\leq7,n\in N^{*}\\n^{2}-14n + 98,n\geq8,n\in N^{*}\end{cases}$.
3.(13分)已知等差数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$a_{5}=6$,$S_{3}+a_{3}=13$.
(1)求$\{ a_{n}\}$的通项公式;
(2)已知$b_{n}=(-1)^{n}\cdot \frac{2n + 3}{a_{n}a_{n + 1}}$,数列$\{ b_{n}\}$的前$n$项和为$T_{n}$,求$T_{4}$的值.
(1)求$\{ a_{n}\}$的通项公式;
(2)已知$b_{n}=(-1)^{n}\cdot \frac{2n + 3}{a_{n}a_{n + 1}}$,数列$\{ b_{n}\}$的前$n$项和为$T_{n}$,求$T_{4}$的值.
答案:
解:
(1)设数列$\{ a_{n}\}$的公差为$d$,
则由题意得$\begin{cases}a_{5}=a_{1}+4d = 6\\S_{3}+a_{3}=3a_{1}+\frac{3\times2}{2}d+a_{1}+2d = 13\end{cases}$,
解得$\begin{cases}a_{1}=2\\d = 1\end{cases}$,
故$a_{n}=a_{1}+(n - 1)d=n + 1$.
(2)由
(1)可得$b_{n}=(-1)^{n}\cdot\frac{2n + 3}{a_{n}a_{n + 1}}=(-1)^{n}\cdot\frac{2n + 3}{(n + 1)(n + 2)}=(-1)^{n}(\frac{1}{n + 1}+\frac{1}{n + 2})$,则$T_{4}=-(\frac{1}{2}+\frac{1}{3})+(\frac{1}{3}+\frac{1}{4})-(\frac{1}{4}+\frac{1}{5})+(\frac{1}{5}+\frac{1}{6})=-\frac{1}{2}+\frac{1}{6}=-\frac{1}{3}$.
(1)设数列$\{ a_{n}\}$的公差为$d$,
则由题意得$\begin{cases}a_{5}=a_{1}+4d = 6\\S_{3}+a_{3}=3a_{1}+\frac{3\times2}{2}d+a_{1}+2d = 13\end{cases}$,
解得$\begin{cases}a_{1}=2\\d = 1\end{cases}$,
故$a_{n}=a_{1}+(n - 1)d=n + 1$.
(2)由
(1)可得$b_{n}=(-1)^{n}\cdot\frac{2n + 3}{a_{n}a_{n + 1}}=(-1)^{n}\cdot\frac{2n + 3}{(n + 1)(n + 2)}=(-1)^{n}(\frac{1}{n + 1}+\frac{1}{n + 2})$,则$T_{4}=-(\frac{1}{2}+\frac{1}{3})+(\frac{1}{3}+\frac{1}{4})-(\frac{1}{4}+\frac{1}{5})+(\frac{1}{5}+\frac{1}{6})=-\frac{1}{2}+\frac{1}{6}=-\frac{1}{3}$.
查看更多完整答案,请扫码查看