2026年课堂作业武汉出版社九年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年课堂作业武汉出版社九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年课堂作业武汉出版社九年级数学下册人教版》

在圆中,三角形相似的常见基本图形如下:
答案: △PAB∽△PCA,△ACD∽△ABC∽△CBD
例 如图,$\triangle ABC$内接于$\odot O$,且$AB$为$\odot O$的直径.$ \angle ACB$的平分线交$\odot O$于点$D$,过点$D$作$\odot O$的切线$PD$交$CA$的延长线于点$P$,过点$A$作$AE \perp CD$于点$E$,过点$B$作$BF \perp CD$于点$F$.
(1)试猜想线段$AE$,$EF$,$BF$之间有何数量关系,并加以证明.
(2)若$AC = 6$,$BC = 8$,求线段$PD$的长.
答案:
(1) $BF - AE = EF$.证明如下:
∵$AB$为$\odot O$直径,$\therefore \angle ACB = 90°$.
∵$CD$平分$\angle ACB$,$\therefore \angle ACD = \angle BCD = 45°$.
∵$AE \perp CD$,$BF \perp CD$,$\therefore \triangle AEC$,$\triangle BFC$为直角三角形.
$\therefore \angle CAE = 90° - \angle ACD = 45°$,$\angle CBF = 90° - \angle BCD = 45°$.
$\therefore \triangle AEC$,$\triangle BFC$为等腰直角三角形,$\therefore AE = CE$,$BF = CF$.
∵$CF = CE + EF$,$\therefore BF = AE + EF$,即$BF - AE = EF$.
(2) 在$Rt\triangle ACB$中,$AB = \sqrt{AC^2 + BC^2} = \sqrt{6^2 + 8^2} = 10$.
∵$CD$平分$\angle ACB$,$\therefore \overset{\frown}{AD} = \overset{\frown}{BD}$,$\therefore AD = BD$.
∵$AB$为直径,$\therefore \angle ADB = 90°$,$\triangle ADB$为等腰直角三角形,$\therefore AD = \frac{AB}{\sqrt{2}} = 5\sqrt{2}$.
∵$AE \perp CD$,$\triangle AEC$为等腰直角三角形,$AC = 6$,$\therefore AE = CE = \frac{AC}{\sqrt{2}} = 3\sqrt{2}$.
在$Rt\triangle AED$中,$DE = \sqrt{AD^2 - AE^2} = \sqrt{(5\sqrt{2})^2 - (3\sqrt{2})^2} = 4\sqrt{2}$,$\therefore CD = CE + DE = 3\sqrt{2} + 4\sqrt{2} = 7\sqrt{2}$.
∵$PD$为$\odot O$切线,$\therefore \angle PDA = \angle PCD$(弦切角等于所夹弧对圆周角).
又$\angle P = \angle P$,$\therefore \triangle PDA \backsim \triangle PCD$,$\therefore \frac{PD}{PC} = \frac{PA}{PD} = \frac{AD}{DC} = \frac{5}{7}$.
设$PD = x$,则$PA = \frac{5}{7}x$,$PC = \frac{7}{5}x$.
∵$PC = PA + AC$,$\therefore \frac{7}{5}x = \frac{5}{7}x + 6$,解得$x = \frac{35}{4}$.
$\therefore PD = \frac{35}{4}$.

查看更多完整答案,请扫码查看

关闭