2025年智慧学习明天出版社七年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年智慧学习明天出版社七年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年智慧学习明天出版社七年级数学上册人教版》

第91页
2. 填空.
(1) 多项式 $ a^{3} - a^{2}b + ab^{2} - b^{3} $ 是
项式;
(2) 多项式 $ 3n^{4} - 2n^{2} + 1 $ 是
项式,常数项为
1
.
答案:
(1) 三,四
(2) 四,三,$1$
用多项式填空,并指出它们的项和次数.
(1) 一个长方形相邻两条边的长分别为 $ a,b $,则这个长方形的周长为
$2a + 2b$
.
(2) $ m $ 为一个有理数,$ m $ 的立方与 $ 2 $ 的差为
$m^3 - 2$
.
(3) 某公司向某地投放共享单车,前两年每年投放 $ a $ 辆,为环保和安全起见,从第三年年初起不再投放,且每个月回收 $ b $ 辆. 第三年年底,该地区共有这家公司的共享单车的辆数为
$2a - 12b$
.
(4) 现存于陕西历史博物馆的我国南北朝时期的官员独孤信的印章如图所示,它由 $ 18 $ 个相同的正方形和 $ 8 $ 个相同的等边三角形围成. 如果其中正方形和等边三角形的边长都为 $ a $,等边三角形的高为 $ b $,那么这个印章的表面积为
$18a^2 + 4ab$
.
答案:
(1) $2a + 2b$;项:$2a$,$2b$;次数:1。
(2) $m^3 - 2$;项:$m^3$,$-2$;次数:3。
(3) $2a - 12b$;项:$2a$,$-12b$;次数:1。
(4) $18a^2 + 4ab$;项:$18a^2$,$4ab$;次数:2。
1. 下列式子中,是多项式的是(
B
)
A.$ 2x^{2}y $
B.$ ab - a $
C.$ 6\pi $
D.$ -3m $
答案: B
2. 下列各式中,不是整式的是(
B
)
A.$ x - y $
B.$ \frac{2}{x} $
C.$ 4xy $
D.$ 0 $
答案: B
3. 下列说法中不正确的是(
D
)
A.$ m $ 是单项式也是整式
B.$ -xy^{2} - 2xy + y^{2} $ 是多项式也是整式
C.若一个代数式是单项式,则一定是整式
D.多项式是整式,整式也是多项式
答案: D
4. 多项式 $ -\frac{x^{2}y}{3} + 2x - 3 $ 是
项式,最高次项的系数是
$-\dfrac{1}{3}$
,常数项是
$-3$
.
答案: 三;三;$-\dfrac{1}{3}$;$-3$
5. 多项式 $ 2x^{2} - 3xy^{2} + x - 1 $ 的各项分别为
$2x^{2}$,$-3xy^{2}$,$x$,$-1$
.
答案: $2x^{2}$,$-3xy^{2}$,$x$,$-1$
6. 已知多项式 $ -\frac{5}{6}x^{2}y^{m + 2} + xy^{2} - \frac{1}{2}x^{3} + 6 $ 是六次四项式,则 $ m $ 的值为
2
.
答案: 2
学习盘点
你理解多项式的有关定义了吗? 举出实例,并说出它的最高次、项数、每一项的次数等. 多项式的次数与单项式的次数有什么区别?
答案: 1. 多项式的定义:几个单项式的和称为多项式。
举例:多项式 $3x^{2}y - 2xy + 5$。
这个多项式包含三个单项式:$3x^{2}y$,$-2xy$,和 $5$。
最高次:观察这三个单项式,$3x^{2}y$ 的次数是 $2+1=3$,这是该多项式的最高次数。
项数:该多项式包含三个单项式,所以项数为3。
每一项的次数:
$3x^{2}y$ 的次数为3。
$-2xy$ 的次数为 $1+1=2$。
$5$ 的次数为0(常数项次数为0)。
多项式的次数与单项式的次数的区别:
多项式的次数是指多项式中次数最高的单项式的次数。
单项式的次数是所有字母的指数之和。
1. 下列说法正确的是(
B
)

A.整式就是多项式
B.$ \pi $ 是单项式
C.$ x^{4} + 2x^{3} $ 是七次二项式
D.$ \frac{3x - 1}{5} $ 是单项式
答案: B
2. 如果一个多项式是五次多项式,那么它任何一项的次数(
D
)
A.都小于 $ 5 $
B.都等于 $ 5 $
C.都不小于 $ 5 $
D.都不大于 $ 5 $
答案: D

查看更多完整答案,请扫码查看

关闭