2025年名校课堂八年级数学上册人教版云南专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂八年级数学上册人教版云南专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂八年级数学上册人教版云南专版》

7.如图,∠ABC=∠DEF,AB=DE,试说明:△ABC≌△DEF.
(1)若以“SAS”为依据,还需添加的条件为
$BC = EF$或$BE = CF$

(2)若以“ASA”为依据,还需添加的条件为
$\angle A = \angle D$

(3)若以“AAS”为依据,还需添加的条件为
$\angle ACB = \angle DFE$
.
答案: 7.
(1)$BC = EF$或$BE = CF$
(2)$\angle A = \angle D$
(3)$\angle ACB = \angle DFE$
8.(昆明期末)如图,某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块大小完全一样的玻璃,那么最省事的方法是(
C
)

A.带①去
B.带②去
C.带③去
D.①②③都带去
答案: 8.C
9.如图,在△ACD中,∠CAD=90°,AC=6,AD=8,AB//CD,E是CD上一点,BE交AD于点F.若AB=DE,则图中阴影部分的面积为 (
A
)

A.24
B.30
C.42
D.48
答案: 9.A
10.如图,在Rt△ABC和Rt△ADE中,∠C=∠E=90°,∠CAD=∠EAB,AC=AE,AB,DE相交于点F,AD,BC相交于点G.
(1)求证:△ABC≌△ADE;
(2)若AB=11,AG=6,求DG的长.
答案: 10.解:
(1)证明:$\because \angle CAD = \angle EAB$,$\therefore \angle CAD + \angle BAD = \angle EAB + \angle DAB$,即$\angle CAB = \angle EAD$. $\because AC = AE$,$\angle C = \angle E = 90^{\circ}$,$\therefore \triangle ABC \cong \triangle ADE$(ASA).
(2)$\because \triangle ABC \cong \triangle ADE$,$\therefore AB = AD$. $\because AB = 11$,$\therefore AD =$
$11$.又$\because AG = 6$,$\therefore DG = 11 - 6 = 5$.
11.(曲靖期末)如图1,已知点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE.
(1)求证:DE=BD+CE;
(2)如果是如图2这个图形,我们能得到什么结论?并证明.
    
答案: 11.解:
(1)证明:$\because BD \perp DE$,$CE \perp DE$,$\therefore \angle D = \angle E = 90^{\circ}$. $\therefore \angle DBA + \angle DAB = 90^{\circ}$. $\because \angle BAC = 90^{\circ}$,$\therefore \angle DAB + \angle CAE = 90^{\circ}$. $\therefore \angle DBA = \angle CAE$.又$\because AB = AC$,$\therefore \triangle ADB \cong \triangle CEA$(AAS). $\therefore BD = AE$,$CE = AD$. $\therefore DE = AD + AE = CE + BD$.
(2)结论:$BD = CE + DE$.证明:$\because BD \perp DE$,$CE \perp DE$,$\therefore \angle ADB = \angle AEC = 90^{\circ}$. $\therefore \angle ABD + \angle BAD = 90^{\circ}$. $\because \angle BAC = 90^{\circ}$,$\therefore \angle BAD + \angle EAC = 90^{\circ}$. $\therefore \angle ABD = \angle EAC$.又$\because AB = AC$,$\therefore \triangle ADB \cong \triangle CEA$(AAS). $\therefore BD = AE$,$CE = AD$.又$\because AE = AD +$
$DE$,$\therefore BD = CE + DE$.

查看更多完整答案,请扫码查看

关闭