第111页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
1. 先约分,再求值:$\frac{2x + 4y}{x^2 + 4xy + 4y^2}$,其中$x = 1$,$y = -2$。
答案:
1. 解:原式$ = \frac {2(x + 2y)}{(x + 2y)^2} = \frac {2}{x + 2y}$. 当 $x = 1$, $y = -2$, 原式$ = \frac {2}{1 + 2 × (-2)} = - \frac {2}{3}$.
2. 已知$\frac{x}{y} = 2$,求$\frac{x^2 - y^2}{x^2 - 2xy + y^2}$的值。
答案:
2. 解:$\because \frac {x}{y} = 2$, $\therefore x = 2y$. $\therefore$原式$ = \frac {(x + y)(x - y)}{(x - y)^2} = \frac {x + y}{x - y} = \frac {3y}{y} = 3$.
3. 已知$a : b : c = 2 : 3 : 5$,求$\frac{b^2 + c^2}{a^2}$的值。
答案:
3. 解:$\because a : b : c = 2 : 3 : 5$, $\therefore$可设 $a = 2k$, $b = 3k$, $c = 5k (k \neq 0)$. $\therefore \frac {b^2 + c^2}{a^2} = \frac {9k^2 + 25k^2}{4k^2} = \frac {17}{2}$.
4. 已知$m^2 - 3m + 2 = 0$,求$\frac{2025m}{m^2 - 2m + 2}$的值。
答案:
4. 解:$\because m^2 - 3m + 2 = 0$, $\therefore m^2 + 2 = 3m$. $\therefore$原式$ = \frac {2025m}{3m - 2m} = \frac {2025m}{m} = 2025$.
【例】已知 $ x + \dfrac{1}{x} = 3 $,试求:
(1) $ x^{2} + \dfrac{1}{x^{2}} $的值;
(2) $ x - \dfrac{1}{x} $的值.
解:(1) $ \because x + \dfrac{1}{x} = 3 $,
$ \therefore (x + \dfrac{1}{x})^{2} = x^{2} + $
$ \therefore x^{2} + \dfrac{1}{x^{2}} = $
(2) $ \because x^{2} + \dfrac{1}{x^{2}} = $
$ \therefore (x - \dfrac{1}{x})^{2} = $
$ \therefore x - \dfrac{1}{x} = $
方法指导:(1) $ x^{2} + \dfrac{1}{x^{2}} = (x \pm \dfrac{1}{x})^{2} \mp 2 $;
(2) $ x^{4} + \dfrac{1}{x^{4}} = (x^{2} \pm \dfrac{1}{x^{2}})^{2} \mp 2 $;
(3) $ (x + \dfrac{1}{x})^{2} - (x - \dfrac{1}{x})^{2} = 4 $.
(1) $ x^{2} + \dfrac{1}{x^{2}} $的值;
(2) $ x - \dfrac{1}{x} $的值.
解:(1) $ \because x + \dfrac{1}{x} = 3 $,
$ \therefore (x + \dfrac{1}{x})^{2} = x^{2} + $
2
$ + \dfrac{1}{x^{2}} = $9
.$ \therefore x^{2} + \dfrac{1}{x^{2}} = $
7
.(2) $ \because x^{2} + \dfrac{1}{x^{2}} = $
7
,$ \therefore (x - \dfrac{1}{x})^{2} = $
$x^{2}-2+\frac{1}{x^{2}}$
$ = $5
.$ \therefore x - \dfrac{1}{x} = $
$\pm\sqrt{5}$
.方法指导:(1) $ x^{2} + \dfrac{1}{x^{2}} = (x \pm \dfrac{1}{x})^{2} \mp 2 $;
(2) $ x^{4} + \dfrac{1}{x^{4}} = (x^{2} \pm \dfrac{1}{x^{2}})^{2} \mp 2 $;
(3) $ (x + \dfrac{1}{x})^{2} - (x - \dfrac{1}{x})^{2} = 4 $.
答案:
(1)2 9 7
(2)7 $x^{2}-2+\frac{1}{x^{2}}$ 5 $\pm\sqrt{5}$
(1)2 9 7
(2)7 $x^{2}-2+\frac{1}{x^{2}}$ 5 $\pm\sqrt{5}$
1. 已知 $ x^{2} - 5x + 1 = 0 $,则 $ x^{2} + \dfrac{1}{x^{2}} $的值为
23
.
答案:
1.23
2. (教材 P145 新增习题 T12 变式)若 $ x - \dfrac{1}{x} = 4 $,则 $ \dfrac{3x^{2}}{x^{4} - 7x^{2} + 1} = $ (
A.$ \dfrac{3}{11} $
B.$ -1 $
C.$ \dfrac{1}{3} $
D.$ -\dfrac{3}{5} $
A
)A.$ \dfrac{3}{11} $
B.$ -1 $
C.$ \dfrac{1}{3} $
D.$ -\dfrac{3}{5} $
答案:
2.A
3. 已知 $ x + \dfrac{1}{x} = \dfrac{13}{6} $且 $ 0 < x < 1 $,求 $ x^{2} - \dfrac{1}{x^{2}} $的值.
答案:
3.解:$\because x+\frac{1}{x}=\frac{13}{6}$,$\therefore (x+\frac{1}{x})^{2}=\frac{169}{36}$,$\therefore x^{2}+2+\frac{1}{x^{2}}=\frac{169}{36}$,$\therefore x^{2}-2+\frac{1}{x^{2}}=\frac{25}{36}$,$\therefore (x-\frac{1}{x})^{2}=\frac{25}{36}$,$\because 0<x<1$,$\therefore x-\frac{1}{x}<0$,$\therefore x-\frac{1}{x}=$
$-\frac{5}{6}$,$\therefore x^{2}-\frac{1}{x^{2}}=(x+\frac{1}{x})(x-\frac{1}{x})=\frac{13}{6}×(-\frac{5}{6})=-\frac{65}{36}$.
$-\frac{5}{6}$,$\therefore x^{2}-\frac{1}{x^{2}}=(x+\frac{1}{x})(x-\frac{1}{x})=\frac{13}{6}×(-\frac{5}{6})=-\frac{65}{36}$.
查看更多完整答案,请扫码查看