2025年高考总复习首选用卷数学人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高考总复习首选用卷数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第98页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
- 第235页
- 第236页
- 第237页
- 第238页
- 第239页
- 第240页
- 第241页
- 第242页
- 第243页
- 第244页
- 第245页
8. (多选)下列式子中,值为$\frac{1}{4}$的是( )
A. $\cos36^{\circ}\cos72^{\circ}$
B. $\sin15^{\circ}\sin75^{\circ}$
C. $\frac{1}{\sin50^{\circ}}+\frac{\sqrt{3}}{\cos50^{\circ}}$
D. $\frac{1}{3}-\frac{2}{3}\cos^{2}15^{\circ}$
A. $\cos36^{\circ}\cos72^{\circ}$
B. $\sin15^{\circ}\sin75^{\circ}$
C. $\frac{1}{\sin50^{\circ}}+\frac{\sqrt{3}}{\cos50^{\circ}}$
D. $\frac{1}{3}-\frac{2}{3}\cos^{2}15^{\circ}$
答案:
AB [$\cos36^{\circ}\cos72^{\circ}=\frac{2\sin36^{\circ}\cos36^{\circ}\cos72^{\circ}}{2\sin36^{\circ}}=\frac{2\sin72^{\circ}\cos72^{\circ}}{4\sin36^{\circ}}=\frac{\sin144^{\circ}}{4\sin36^{\circ}}=\frac{1}{4}$,故A正确;$\sin15^{\circ}\sin75^{\circ}=\sin15^{\circ}\cos15^{\circ}=\frac{1}{2}\times2\sin15^{\circ}\cos15^{\circ}=\frac{1}{2}\sin30^{\circ}=\frac{1}{4}$,故B正确;$\frac{1}{\sin50^{\circ}}+\frac{\sqrt{3}}{\cos50^{\circ}}=\frac{\cos50^{\circ}+\sqrt{3}\sin50^{\circ}}{\sin50^{\circ}\cos50^{\circ}}=\frac{2(\frac{\sqrt{3}}{2}\sin50^{\circ}+\frac{1}{2}\cos50^{\circ})}{\frac{1}{2}\sin100^{\circ}}=\frac{2\sin80^{\circ}}{\frac{1}{2}\sin80^{\circ}} = 4$,故C错误;$\frac{1}{3}-\frac{2}{3}\cos^{2}15^{\circ}=-\frac{1}{3}(2\cos^{2}15^{\circ}-1)=-\frac{1}{3}\cos30^{\circ}=-\frac{\sqrt{3}}{6}$,故D错误。故选AB。]
9. $\cos20^{\circ}\cos40^{\circ}\cos80^{\circ}$的值为________.
答案:
答案 $\frac{1}{8}$
解析 $\cos20^{\circ}\cos40^{\circ}\cos80^{\circ}=\frac{8\sin20^{\circ}\cos20^{\circ}\cos40^{\circ}\cos80^{\circ}}{8\sin20^{\circ}}=\frac{\sin160^{\circ}}{8\sin20^{\circ}}=\frac{1}{8}$。
解析 $\cos20^{\circ}\cos40^{\circ}\cos80^{\circ}=\frac{8\sin20^{\circ}\cos20^{\circ}\cos40^{\circ}\cos80^{\circ}}{8\sin20^{\circ}}=\frac{\sin160^{\circ}}{8\sin20^{\circ}}=\frac{1}{8}$。
10. 已知$\tan\alpha = 2\cos\beta\neq0,\cos(\alpha - \beta) = \frac{2}{3}\sin\alpha$,则$\sin\beta =$________.
答案:
答案 $\frac{1}{6}$
解析 因为$\tan\alpha = 2\cos\beta\neq0$,所以$\frac{\sin\alpha}{\cos\alpha}=2\cos\beta\neq0\Rightarrow\cos\alpha\cos\beta=\frac{1}{2}\sin\alpha$,且$\sin\alpha\neq0$,$\cos\alpha\neq0$,又$\cos(\alpha - \beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta=\frac{2}{3}\sin\alpha$,所以$\frac{1}{2}\sin\alpha+\sin\alpha\sin\beta=\frac{2}{3}\sin\alpha$,因为$\sin\alpha\neq0$,所以$\frac{1}{2}+\sin\beta=\frac{2}{3}\Rightarrow\sin\beta=\frac{1}{6}$。
解析 因为$\tan\alpha = 2\cos\beta\neq0$,所以$\frac{\sin\alpha}{\cos\alpha}=2\cos\beta\neq0\Rightarrow\cos\alpha\cos\beta=\frac{1}{2}\sin\alpha$,且$\sin\alpha\neq0$,$\cos\alpha\neq0$,又$\cos(\alpha - \beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta=\frac{2}{3}\sin\alpha$,所以$\frac{1}{2}\sin\alpha+\sin\alpha\sin\beta=\frac{2}{3}\sin\alpha$,因为$\sin\alpha\neq0$,所以$\frac{1}{2}+\sin\beta=\frac{2}{3}\Rightarrow\sin\beta=\frac{1}{6}$。
11. (2023·新课标Ⅱ卷)已知$\alpha$为锐角,$\cos\alpha = \frac{1+\sqrt{5}}{4}$,则$\sin\frac{\alpha}{2}=$( )
A. $\frac{3 - \sqrt{5}}{8}$
B. $\frac{-1+\sqrt{5}}{8}$
C. $\frac{3 - \sqrt{5}}{4}$
D. $\frac{-1+\sqrt{5}}{4}$
A. $\frac{3 - \sqrt{5}}{8}$
B. $\frac{-1+\sqrt{5}}{8}$
C. $\frac{3 - \sqrt{5}}{4}$
D. $\frac{-1+\sqrt{5}}{4}$
答案:
D [因为$\cos\alpha = 1 - 2\sin^{2}\frac{\alpha}{2}=\frac{1+\sqrt{5}}{4}$,而$\alpha$为锐角,解得$\sin\frac{\alpha}{2}=\sqrt{\frac{3 - \sqrt{5}}{8}}=\sqrt{\frac{(\sqrt{5}-1)^{2}}{16}}=\frac{\sqrt{5}-1}{4}$。故选D。]
12. (2023·新课标Ⅰ卷)已知$\sin(\alpha - \beta) = \frac{1}{3},\cos\alpha\sin\beta = \frac{1}{6}$,则$\cos(2\alpha + 2\beta)=$( )
A. $\frac{7}{9}$
B. $\frac{1}{9}$
C. $-\frac{1}{9}$
D. $-\frac{7}{9}$
A. $\frac{7}{9}$
B. $\frac{1}{9}$
C. $-\frac{1}{9}$
D. $-\frac{7}{9}$
答案:
B [因为$\sin(\alpha - \beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta=\frac{1}{3}$,而$\cos\alpha\sin\beta=\frac{1}{6}$,因此$\sin\alpha\cos\beta=\frac{1}{2}$,则$\sin(\alpha + \beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta=\frac{2}{3}$,所以$\cos(2\alpha + 2\beta)=\cos[2(\alpha + \beta)]=1 - 2\sin^{2}(\alpha + \beta)=1-2\times(\frac{2}{3})^{2}=\frac{1}{9}$。故选B。]
13. (2022·新高考Ⅱ卷)若$\sin(\alpha + \beta) + \cos(\alpha + \beta) = 2\sqrt{2}\cos(\alpha + \frac{\pi}{4})\cdot\sin\beta$,则( )
A. $\tan(\alpha - \beta) = 1$
B. $\tan(\alpha + \beta) = 1$
C. $\tan(\alpha - \beta) = -1$
D. $\tan(\alpha + \beta) = -1$
A. $\tan(\alpha - \beta) = 1$
B. $\tan(\alpha + \beta) = 1$
C. $\tan(\alpha - \beta) = -1$
D. $\tan(\alpha + \beta) = -1$
答案:
C [由已知得$\sin\alpha\cos\beta+\cos\alpha\sin\beta+\cos\alpha\cos\beta-\sin\alpha\sin\beta=2(\cos\alpha - \sin\alpha)\sin\beta$,即$\sin\alpha\cos\beta-\cos\alpha\sin\beta+\cos\alpha\cos\beta+\sin\alpha\sin\beta = 0$,即$\sin(\alpha - \beta)+\cos(\alpha - \beta)=0$,所以$\tan(\alpha - \beta)= - 1$。故选C。]
14. (2021·全国甲卷)若$\alpha \in (0,\frac{\pi}{2}),\tan2\alpha = \frac{\cos\alpha}{2 - \sin\alpha}$,则$\tan\alpha =$( )
A. $\frac{\sqrt{15}}{15}$
B. $\frac{\sqrt{5}}{5}$
C. $\frac{\sqrt{5}}{3}$
D. $\frac{\sqrt{15}}{3}$
A. $\frac{\sqrt{15}}{15}$
B. $\frac{\sqrt{5}}{5}$
C. $\frac{\sqrt{5}}{3}$
D. $\frac{\sqrt{15}}{3}$
答案:
A [因为$\tan2\alpha=\frac{\sin2\alpha}{\cos2\alpha}=\frac{2\sin\alpha\cos\alpha}{1 - 2\sin^{2}\alpha}$,且$\tan2\alpha=\frac{\cos\alpha}{2 - \sin\alpha}$,所以$\frac{2\sin\alpha\cos\alpha}{1 - 2\sin^{2}\alpha}=\frac{\cos\alpha}{2 - \sin\alpha}$,因为$\alpha\in(0,\frac{\pi}{2})$,所以$\cos\alpha\neq0$,$\sin\alpha=\frac{1}{4}$,所以$\cos\alpha=\frac{\sqrt{15}}{4}$,$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\sqrt{15}}{15}$。故选A。]
15. (多选)(2021·新高考Ⅰ卷)已知$O$为坐标原点,点$P_1(\cos\alpha,\sin\alpha)$,$P_2(\cos\beta,-\sin\beta)$,$P_3(\cos(\alpha + \beta),\sin(\alpha + \beta))$,$A(1,0)$,则( )
A. $|\overrightarrow{OP_1}| = |\overrightarrow{OP_2}|$
B. $|\overrightarrow{AP_1}| = |\overrightarrow{AP_2}|$
C. $\overrightarrow{OA}\cdot\overrightarrow{OP_3} = \overrightarrow{OP_1}\cdot\overrightarrow{OP_2}$
D. $\overrightarrow{OA}\cdot\overrightarrow{OP_1} = \overrightarrow{OP_2}\cdot\overrightarrow{OP_3}$
A. $|\overrightarrow{OP_1}| = |\overrightarrow{OP_2}|$
B. $|\overrightarrow{AP_1}| = |\overrightarrow{AP_2}|$
C. $\overrightarrow{OA}\cdot\overrightarrow{OP_3} = \overrightarrow{OP_1}\cdot\overrightarrow{OP_2}$
D. $\overrightarrow{OA}\cdot\overrightarrow{OP_1} = \overrightarrow{OP_2}\cdot\overrightarrow{OP_3}$
答案:
AC [对于A,因为$|\overrightarrow{OP_{1}}|=\sqrt{\cos^{2}\alpha+\sin^{2}\alpha}=1$,$|\overrightarrow{OP_{2}}|=\sqrt{\cos^{2}\beta+(-\sin\beta)^{2}}=1$,所以A正确;对于B,因为$|\overrightarrow{AP_{1}}|=\sqrt{(\cos\alpha - 1)^{2}+\sin^{2}\alpha}=\sqrt{2 - 2\cos\alpha}$,$|\overrightarrow{AP_{2}}|=\sqrt{(\cos\beta - 1)^{2}+\sin^{2}\beta}=\sqrt{2 - 2\cos\beta}$,所以B错误;对于C,因为$\overrightarrow{OA}\cdot\overrightarrow{OP_{3}}=(1,0)\cdot(\cos(\alpha + \beta),\sin(\alpha + \beta))=\cos(\alpha + \beta)$,$\overrightarrow{OP_{1}}\cdot\overrightarrow{OP_{2}}=\cos\alpha\cos\beta-\sin\alpha\sin\beta=\cos(\alpha + \beta)$,所以$\overrightarrow{OA}\cdot\overrightarrow{OP_{3}}=\overrightarrow{OP_{1}}\cdot\overrightarrow{OP_{2}}$,所以C正确;对于D,因为$\overrightarrow{OA}\cdot\overrightarrow{OP_{1}}=(1,0)\cdot(\cos\alpha,\sin\alpha)=\cos\alpha$,$\overrightarrow{OP_{2}}\cdot\overrightarrow{OP_{3}}=(\cos\beta,-\sin\beta)\cdot(\cos(\alpha + \beta),\sin(\alpha + \beta))=\cos\beta\cos(\alpha + \beta)-\sin\beta\sin(\alpha + \beta)=\cos(2\beta+\alpha)$,所以D错误。故选AC。]
16. (2022·浙江高考)若$3\sin\alpha - \sin\beta = \sqrt{10},\alpha + \beta = \frac{\pi}{2}$,则$\sin\alpha =$______,$\cos2\beta =$________.
答案:
答案 $\frac{3\sqrt{10}}{10}$ $\frac{4}{5}$
解析 $\because\alpha+\beta=\frac{\pi}{2}$,$\therefore\sin\beta=\cos\alpha$,即$3\sin\alpha-\cos\alpha=\sqrt{10}$,即$\sqrt{10}(\frac{3\sqrt{10}}{10}\sin\alpha-\frac{\sqrt{10}}{10}\cos\alpha)=\sqrt{10}$,令$\sin\theta=\frac{\sqrt{10}}{10}$,$\cos\theta=\frac{3\sqrt{10}}{10}$,则$\sqrt{10}\sin(\alpha - \theta)=\sqrt{10}$,$\therefore\alpha - \theta=\frac{\pi}{2}+2k\pi$,$k\in\mathbf{Z}$,即$\alpha=\theta+\frac{\pi}{2}+2k\pi$,$k\in\mathbf{Z}$,$\therefore\sin\alpha=\sin(\theta+\frac{\pi}{2}+2k\pi)=\cos\theta=\frac{3\sqrt{10}}{10}(k\in\mathbf{Z})$,则$\cos2\beta=2\cos^{2}\beta - 1=2\sin^{2}\alpha - 1=\frac{4}{5}$。
解析 $\because\alpha+\beta=\frac{\pi}{2}$,$\therefore\sin\beta=\cos\alpha$,即$3\sin\alpha-\cos\alpha=\sqrt{10}$,即$\sqrt{10}(\frac{3\sqrt{10}}{10}\sin\alpha-\frac{\sqrt{10}}{10}\cos\alpha)=\sqrt{10}$,令$\sin\theta=\frac{\sqrt{10}}{10}$,$\cos\theta=\frac{3\sqrt{10}}{10}$,则$\sqrt{10}\sin(\alpha - \theta)=\sqrt{10}$,$\therefore\alpha - \theta=\frac{\pi}{2}+2k\pi$,$k\in\mathbf{Z}$,即$\alpha=\theta+\frac{\pi}{2}+2k\pi$,$k\in\mathbf{Z}$,$\therefore\sin\alpha=\sin(\theta+\frac{\pi}{2}+2k\pi)=\cos\theta=\frac{3\sqrt{10}}{10}(k\in\mathbf{Z})$,则$\cos2\beta=2\cos^{2}\beta - 1=2\sin^{2}\alpha - 1=\frac{4}{5}$。
17. (2024·山西高三月考)已知$\tan(\frac{\pi}{4}-\alpha) = -3$,则$\cos2\alpha + 1=$( )
A. $\frac{2}{7}$
B. $\frac{3}{10}$
C. $\frac{2}{5}$
D. $\frac{4}{7}$
A. $\frac{2}{7}$
B. $\frac{3}{10}$
C. $\frac{2}{5}$
D. $\frac{4}{7}$
答案:
C [由$\tan(\frac{\pi}{4}-\alpha)=-3$,有$\frac{1 - \tan\alpha}{1 + \tan\alpha}=-3$,解得$\tan\alpha=-2$,则$\cos2\alpha + 1=2\cos^{2}\alpha=\frac{2\cos^{2}\alpha}{\sin^{2}\alpha+\cos^{2}\alpha}=\frac{2}{\tan^{2}\alpha + 1}=\frac{2}{5}$。故选C。]
查看更多完整答案,请扫码查看