2025年高考总复习首选用卷数学人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高考总复习首选用卷数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年高考总复习首选用卷数学人教版》

第217页
1. 已知$S_{n}$为数列$\{ a_{n}\}$的前n项和,且$\log_{2}(S_{n}+1)=n + 1$,则数列$\{ a_{n}\}$的通项公式为( )
A. $a_{n}=2^{n}$
B. $a_{n}=\begin{cases}3,n = 1,\\2^{n},n\geqslant2\end{cases}$
C. $a_{n}=2^{n - 1}$
D. $a_{n}=2^{n + 1}$
答案: B [由$\log_{2}(S_{n}+1)=n + 1$,得$S_{n}+1=2^{n + 1}$。当$n = 1$时,$a_{1}=S_{1}=3$;当$n\geqslant2$时,$a_{n}=S_{n}-S_{n - 1}=2^{n}$。所以数列$\{a_{n}\}$的通项公式为$a_{n}=\begin{cases}3,n = 1\\2^{n},n\geqslant2\end{cases}$。故选B。]
2. 数列$\{ a_{n}\}$中,$a_{1}=1$,$\frac{a_{n + 1}}{a_{n}}=\frac{n}{n + 1}$(n为正整数),则$a_{2024}$的值为( )
A. $\frac{1}{2024}$
B. $\frac{1}{2023}$
C. $\frac{2023}{2024}$
D. $\frac{2024}{2023}$
答案: A [因为$\frac{a_{n + 1}}{a_{n}}=\frac{n}{n + 1}$,所以$a_{n}=\frac{a_{n}}{a_{n - 1}}\cdot\frac{a_{n - 1}}{a_{n - 2}}\cdots\frac{a_{4}}{a_{3}}\cdot\frac{a_{3}}{a_{2}}\cdot\frac{a_{2}}{a_{1}}\cdot a_{1}=\frac{n - 1}{n}\times\frac{n - 2}{n - 1}\times\cdots\times\frac{3}{4}\times\frac{2}{3}\times\frac{1}{2}\times1=\frac{1}{n}$,所以$a_{2024}=\frac{1}{2024}$。故选A。]
3. 已知数列$\{ a_{n}\}$满足$a_{n + 1}+(-1)^{n + 1}a_{n}=2$,则其前100项和为( )
A. 250
B. 200
C. 150
D. 100
答案: D [当$n$为奇数时,得$a_{n}+a_{n + 1}=2$,所以$S_{100}=(a_{1}+a_{2})+(a_{3}+a_{4})+\cdots+(a_{99}+a_{100})=2\times50 = 100$。故选D。]
4. 数列$\{\frac{1}{\sqrt{n + 1}+\sqrt{n}}\}$的前2024项和为( )
A. $\sqrt{2024}+1$
B. $\sqrt{2024}-1$
C. $\sqrt{2025}+1$
D. $\sqrt{2025}-1$
答案: D [$\frac{1}{\sqrt{n + 1}+\sqrt{n}}=\frac{\sqrt{n + 1}-\sqrt{n}}{(\sqrt{n + 1}+\sqrt{n})(\sqrt{n + 1}-\sqrt{n})}=\sqrt{n + 1}-\sqrt{n}$,数列$\{\frac{1}{\sqrt{n + 1}+\sqrt{n}}\}$的前2024项和为$\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\cdots+\sqrt{2023}-\sqrt{2022}+\sqrt{2024}-\sqrt{2023}+\sqrt{2025}-\sqrt{2024}=\sqrt{2025}-1$。故选D。]
5. 已知数列$\{ a_{n}\}$满足$a_{1}=1$,$a_{2}=2$,$a_{n + 2}=a_{n + 1}-a_{n}$,$n\in\mathbf{N}^{*}$,则$a_{2023}=$( )
A. -2
B. -1
C. 1
D. 2
答案: C [$\because a_{n + 2}=a_{n + 1}-a_{n}$,$\therefore a_{n + 3}=a_{n + 2}-a_{n + 1}=a_{n + 1}-a_{n}-a_{n + 1}=-a_{n}$,即$a_{n + 3}=-a_{n}$,又$a_{n + 6}=-a_{n + 3}=-(-a_{n})=a_{n}$,$\therefore\{a_{n}\}$是以6为周期的周期数列,$\therefore a_{2023}=a_{337\times6 + 1}=a_{1}=1$。故选C。]
6. 在数列$\{ a_{n}\}$中,$a_{1}=1$,$a_{n + 1}=a_{n}+n + 1$,则$\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{2024}}=$( )
A. $\frac{2023}{1012}$
B. $\frac{4048}{2025}$
C. $\frac{2023}{2024}$
D. $\frac{2024}{2025}$
答案: B [因为$a_{n + 1}=a_{n}+n + 1$,故可得$a_{2}-a_{1}=2$,$a_{3}-a_{2}=3$,$\cdots$,$a_{n}-a_{n - 1}=n$,及$a_{1}=1$累加可得$a_{n}-a_{n - 1}+a_{n - 1}-a_{n - 2}+\cdots+a_{2}-a_{1}+a_{1}=1 + 2 + 3+\cdots+n$,则$a_{n}=1 + 2 + 3+\cdots+n=\frac{n(n + 1)}{2}$,所以$\frac{1}{a_{n}}=\frac{2}{n(n + 1)}=2(\frac{1}{n}-\frac{1}{n + 1})$,则$\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{2024}}=2[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+\cdots+(\frac{1}{2024}-\frac{1}{2025})]=2(1-\frac{1}{2025})=\frac{4048}{2025}$。故选B。]
7. (多选)斐波那契数列又称黄金分割数列,因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。斐波那契数列用递推的方式可如下定义:用$a_{n}$表示斐波那契数列的第n项,则数列$\{ a_{n}\}$满足$a_{1}=a_{2}=1$,$a_{n + 2}=a_{n + 1}+a_{n}$,记$S_{n}$是数列$\{ a_{n}\}$的前n项和,则( )
A. $a_{7}=13$
B. $a_{1}+a_{3}+a_{5}+\cdots+a_{2023}=a_{2024}$
C. $a_{2}+a_{4}+a_{6}+\cdots+a_{2022}=a_{2023}-2$
D. $S_{2023}=a_{2025}-1$
答案: ABD [$a_{3}=a_{1}+a_{2}=2$,$a_{4}=a_{2}+a_{3}=3$,$a_{5}=a_{3}+a_{4}=5$,$a_{6}=a_{4}+a_{5}=8$,$a_{7}=a_{5}+a_{6}=13$,故A正确;对任意的$n\in N^{*}$,$a_{n + 2}=a_{n + 1}+a_{n}$,则$a_{n}=-a_{n + 1}+a_{n + 2}$,当$n$取偶数时,得$a_{2}=-a_{3}+a_{4}$,$a_{4}=-a_{5}+a_{6}$,$a_{6}=-a_{7}+a_{8}$,$\cdots$,$a_{2022}=-a_{2023}+a_{2024}$,相加得$a_{2}+a_{4}+a_{6}+\cdots+a_{2022}=-(a_{3}+a_{5}+a_{7}+\cdots+a_{2023})+(a_{4}+a_{6}+a_{8}+\cdots+a_{2024})$,则$a_{3}+a_{5}+a_{7}+\cdots+a_{2023}=a_{2024}-a_{2}=a_{2024}-1$,又$a_{1}=1$,则$a_{1}+a_{3}+a_{5}+\cdots+a_{2023}=a_{2024}$,故B正确;对任意的$n\in N^{*}$,$a_{n + 2}=a_{n + 1}+a_{n}$,则$a_{n}=-a_{n + 1}+a_{n + 2}$,当$n$取奇数时,得$a_{1}=-a_{2}+a_{3}$,$a_{3}=-a_{4}+a_{5}$,$a_{5}=-a_{6}+a_{7}$,$\cdots$,$a_{2021}=-a_{2022}+a_{2023}$,相加得$a_{1}+a_{3}+a_{5}+\cdots+a_{2021}=-(a_{2}+a_{4}+a_{6}+\cdots+a_{2022})+(a_{3}+a_{5}+a_{7}+\cdots+a_{2023})$,则$a_{2}+a_{4}+a_{6}+\cdots+a_{2022}=a_{2023}-a_{1}=a_{2023}-1$,故C错误;对任意的$n\in N^{*}$,$a_{n + 2}=a_{n + 1}+a_{n}$,则$a_{n}=-a_{n + 1}+a_{n + 2}$,$S_{2023}=a_{1}+a_{2}+a_{3}+\cdots+a_{2023}=(-a_{2}+a_{3})+(-a_{3}+a_{4})+\cdots+(-a_{2024}+a_{2025})=a_{2025}-a_{2}=a_{2025}-1$,故D正确。故选ABD。]

查看更多完整答案,请扫码查看

关闭