2025年高考总复习首选用卷数学人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高考总复习首选用卷数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年高考总复习首选用卷数学人教版》

第208页
1.(2023·新课标Ⅰ卷)设等差数列{aₙ}的公差为d,且d>1.令bₙ=$\frac{n²+n}{aₙ}$,记Sₙ,Tₙ分别为数列{aₙ},{bₙ}的前n项和.
(1)若3a₂=3a₁+a₃,S₃+T₃=21,求{aₙ}的通项公式;
(2)若{bₙ}为等差数列,且S₉₉-T₉₉=99,求d.
答案: 解 
(1)
∵3a₂ = 3a₁ + a₃,
∴3d = a₁ + 2d,解得a₁ = d,
∴S₃ = 3a₂ = 3(a₁ + d) = 6d,
又T₃ = b₁ + b₂ + b₃ = 2/d + 6/2d + 12/3d = 9/d,
∴S₃ + T₃ = 6d + 9/d = 21,即2d² - 7d + 3 = 0,
解得d = 3或d = 1/2(舍去),
∴aₙ = a₁ + (n - 1)d = 3n.
(2)
∵{bₙ}为等差数列,
∴2b₂ = b₁ + b₃,即12/a₂ = 2/a₁ + 12/a₃,
∴6(1/a₂ - 1/a₃) = 6d/(a₂a₃) = 6d/((a₁ + d)(a₁ + 2d)) = 1/a₁,
即a₁² - 3a₁d + 2d² = 0,解得a₁ = d或a₁ = 2d,
∵d > 1,
∴aₙ > 0,
又S₉₉ - T₉₉ = 99,
由等差数列的性质知,99a₅₀ - 99b₅₀ = 99,即a₅₀ - b₅₀ = 1,
∴a₅₀ - 2550/a₅₀ = 1,即a₅₀² - a₅₀ - 2550 = 0,
解得a₅₀ = 51或a₅₀ = -50(舍去)。
当a₁ = 2d时,a₅₀ = a₁ + 49d = 51d = 51,
解得d = 1,与d > 1矛盾,无解;
当a₁ = d时,a₅₀ = a₁ + 49d = 50d = 51,解得d = 51/50.
综上,d = 51/50.
2.(2023·新课标Ⅱ卷){aₙ}为等差数列,bₙ=$\begin{cases}{a_n-6,n为奇数}\\{2a_n,n为偶数}\end{cases}$
记Sₙ,Tₙ分别为数列{aₙ},{bₙ}的前n项和,S₄=32,T₃=16.
(1)求{aₙ}的通项公式;
(2)证明:当n>5时,Tₙ>Sₙ.
答案: 解 
(1)设等差数列{aₙ}的公差为d,而bₙ = {aₙ - 6, n为奇数; 2aₙ, n为偶数},
则b₁ = a₁ - 6,b₂ = 2a₂ = 2a₁ + 2d,b₃ = a₃ - 6 = a₁ + 2d - 6,
于是{S₄ = 4a₁ + 6d = 32, T₃ = 4a₁ + 4d - 12 = 16},解得{a₁ = 5, d = 2},
所以aₙ = a₁ + (n - 1)d = 2n + 3,
所以{aₙ}的通项公式是aₙ = 2n + 3.
(2)证法一:由
(1)知,
Sₙ = n(5 + 2n + 3)/2 = n² + 4n,bₙ = {2n - 3, n为奇数; 4n + 6, n为偶数},
当n为偶数时,bₙ₋₁ + bₙ = 2(n - 1) - 3 + 4n + 6 = 6n + 1,
Tₙ = (13 + (6n + 1))·n/2÷2 = 3/2n² + 7/2n,
当n > 5时,Tₙ - Sₙ = (3/2n² + 7/2n) - (n² + 4n) = 1/2n(n - 1) > 0,因此Tₙ > Sₙ;
当n为奇数时,Tₙ = Tₙ₊₁ - bₙ₊₁ = 3/2(n + 1)² + 7/2(n + 1) - [4(n + 1) + 6] = 3/2n² + 5/2n - 5,
当n > 5时,Tₙ - Sₙ = (3/2n² + 5/2n - 5) - (n² + 4n) = 1/2(n + 2)(n - 5) > 0,因此Tₙ > Sₙ.
所以当n > 5时,Tₙ > Sₙ.
证法二:由
(1)知,Sₙ = n(5 + 2n + 3)/2 = n² + 4n,
bₙ = {2n - 3, n为奇数; 4n + 6, n为偶数},
当n为偶数时,Tₙ = (b₁ + b₃ + … + bₙ₋₁) + (b₂ + b₄ + … + bₙ) = (-1 + 2(n - 1) - 3)·n/2÷2 + (14 + 4n + 6)·n/2÷2 = 3/2n² + 7/2n,
当n > 5时,Tₙ - Sₙ = (3/2n² + 7/2n) - (n² + 4n) = 1/2n(n - 1) > 0,因此Tₙ > Sₙ;
当n为奇数时,若n≥3,则
Tₙ = (b₁ + b₃ + … + bₙ) + (b₂ + b₄ + … + bₙ₋₁) = (-1 + 2n - 3)·(n + 1)/2÷2 + (14 + 4(n - 1) + 6)·(n - 1)/2÷2 = 3/2n² + 5/2n - 5,显然T₁ = b₁ = -1满足上式,因此当n为奇数时,Tₙ = 3/2n² + 5/2n - 5,
当n > 5时,Tₙ - Sₙ = (3/2n² + 5/2n - 5) - (n² + 4n) = 1/2(n + 2)(n - 5) > 0,因此Tₙ > Sₙ.
所以当n > 5时,Tₙ > Sₙ.

查看更多完整答案,请扫码查看

关闭